1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_LSTMPARAMS_H
#define ARM_COMPUTE_LSTMPARAMS_H
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/Tensor.h"
#include <cstddef>
#include <memory>
namespace arm_compute
{
template <typename T>
class LSTMParams
{
public:
/** Constructor */
LSTMParams()
: _input_to_input_weights(nullptr),
_recurrent_to_input_weights(nullptr),
_cell_to_input_weights(nullptr),
_input_gate_bias(nullptr),
_cell_to_forget_weights(nullptr),
_cell_to_output_weights(nullptr),
_projection_weights(nullptr),
_projection_bias(nullptr),
_input_layer_norm_weights(nullptr),
_forget_layer_norm_weights(nullptr),
_cell_layer_norm_weights(nullptr),
_output_layer_norm_weights(nullptr),
_cell_clip(0.f),
_projection_clip(0.0f),
_input_intermediate_scale(0.0f),
_forget_intermediate_scale(0.0f),
_cell_intermediate_scale(0.0f),
_output_intermediate_scale(0.0f),
_hidden_state_zero(0),
_hidden_state_scale(0.0f),
_has_peephole_opt(false),
_has_projection(false),
_has_cifg_opt(true),
_use_layer_norm(false)
{
}
/** Prevent instances of this class from being copied (As this class contains pointers) */
LSTMParams(const LSTMParams &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
LSTMParams &operator=(const LSTMParams &) = delete;
/** Default destructor */
~LSTMParams() = default;
/** Set CIFG tensor parameters.
*
* @param[in] input_to_input_weights 2D weights tensor with dimensions [input_size, num_units]. Data types supported: QSYMM8/F16/F32.
* @param[in] recurrent_to_input_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Same as @p input_to_input_weights.
* @param[in] cell_to_input_weights 1D weights tensor with dimensions [num_units]. Can be nullptr. Data type supported: Same as @p input_to_input_weights.
* @param[in] input_gate_bias 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_to_input_weights, S32 when @p input_to_input_weights is QSYMM8
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_cifg_params(const T *input_to_input_weights,
const T *recurrent_to_input_weights,
T *cell_to_input_weights,
const T *input_gate_bias)
{
_input_to_input_weights = input_to_input_weights;
_recurrent_to_input_weights = recurrent_to_input_weights;
_cell_to_input_weights = cell_to_input_weights;
_input_gate_bias = input_gate_bias;
_has_cifg_opt = false;
return *this;
}
/** Set projection tensor parameters.
*
* @param[in] projection_weights 2D weights tensor with dimensions [output_size, num_units]. Data type supported: Data types supported: QSYMM8/F16/F32.
* @param[in] projection_bias 1D weights tensor with dimensions [output_size]. Data type supported: Same as @p projection_weights, S32 when @p input_to_input_weights is QSYMM8.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_projection_params(const T *projection_weights, const T *projection_bias)
{
_projection_weights = projection_weights;
_projection_bias = projection_bias;
_has_projection = true;
return *this;
}
/** Set peephole tensor parameters.
*
* @param[in] cell_to_forget_weights 1D weights tensor with dimensions [num_units]. Data type supported: Data types supported: QSYMM16/F16/F32.
* @param[in] cell_to_output_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p cell_to_forget_weights.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_peephole_params(T *cell_to_forget_weights, T *cell_to_output_weights)
{
_cell_to_forget_weights = cell_to_forget_weights;
_cell_to_output_weights = cell_to_output_weights;
_has_peephole_opt = true;
return *this;
}
/** Set layer normalization tensor parameters.
*
* @param[in] input_layer_norm_weights 1D weights tensor with dimensions [num_units]. Data type supported: Data types supported: QSYMM16/F16/F32.
* @param[in] forget_layer_norm_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_layer_norm_weights.
* @param[in] cell_layer_norm_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_layer_norm_weights.
* @param[in] output_layer_norm_weights 1D weights tensor with dimensions [num_units]. Data type supported: Same as @p input_layer_norm_weights.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_layer_normalization_params(T *input_layer_norm_weights,
T *forget_layer_norm_weights,
T *cell_layer_norm_weights,
T *output_layer_norm_weights)
{
_input_layer_norm_weights = input_layer_norm_weights;
_forget_layer_norm_weights = forget_layer_norm_weights;
_cell_layer_norm_weights = cell_layer_norm_weights;
_output_layer_norm_weights = output_layer_norm_weights;
_use_layer_norm = true;
return *this;
}
/** Set cell clip value.
*
* @param[in] cell_clip Value to be used to clip the cell state prior to the cell output activation.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_cell_clip_params(float cell_clip)
{
_cell_clip = cell_clip;
return *this;
}
/** Set projection clip value.
*
* @param[in] projection_clip Value to be used to clip the projection, in case projection is enabled.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_projection_clip_params(float projection_clip)
{
_projection_clip = projection_clip;
return *this;
}
/** Set scale of the intermediate results of matmul of each layer parameters.
*
* @param[in] input_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at input gate.
* @param[in] forget_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at forget gate.
* @param[in] cell_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at cell gate.
* @param[in] output_intermediate_scale Scale of the intermediate result of matmul, i.e. input to layer normalization, at output gate.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_matmul_scale_params(float input_intermediate_scale,
float forget_intermediate_scale,
float cell_intermediate_scale,
float output_intermediate_scale)
{
_input_intermediate_scale = input_intermediate_scale;
_forget_intermediate_scale = forget_intermediate_scale;
_cell_intermediate_scale = cell_intermediate_scale;
_output_intermediate_scale = output_intermediate_scale;
return *this;
}
/** Set hidden state zero and scale parameters.
*
* @param[in] hidden_state_zero The zero point of the hidden state.
* @param[in] hidden_state_scale The scale of the hidden state.
*
* @return Reference to this LSTMParams object
*/
LSTMParams &set_hidden_state_params(int32_t hidden_state_zero, float hidden_state_scale)
{
_hidden_state_zero = hidden_state_zero;
_hidden_state_scale = hidden_state_scale;
return *this;
}
const T *input_to_input_weights() const
{
return _input_to_input_weights;
}
const T *recurrent_to_input_weights() const
{
return _recurrent_to_input_weights;
}
T *cell_to_input_weights() const
{
return _cell_to_input_weights;
}
const T *input_gate_bias() const
{
return _input_gate_bias;
}
T *cell_to_forget_weights() const
{
return _cell_to_forget_weights;
}
T *cell_to_output_weights() const
{
return _cell_to_output_weights;
}
const T *projection_weights() const
{
return _projection_weights;
}
const T *projection_bias() const
{
return _projection_bias;
}
T *input_layer_norm_weights() const
{
return _input_layer_norm_weights;
}
T *forget_layer_norm_weights() const
{
return _forget_layer_norm_weights;
}
T *cell_layer_norm_weights() const
{
return _cell_layer_norm_weights;
}
T *output_layer_norm_weights() const
{
return _output_layer_norm_weights;
}
float cell_clip() const
{
return _cell_clip;
}
float projection_clip() const
{
return _projection_clip;
}
float input_intermediate_scale() const
{
return _input_intermediate_scale;
}
float forget_intermediate_scale() const
{
return _forget_intermediate_scale;
}
float cell_intermediate_scale() const
{
return _cell_intermediate_scale;
}
float output_intermediate_scale() const
{
return _output_intermediate_scale;
}
int32_t hidden_state_zero() const
{
return _hidden_state_zero;
}
float hidden_state_scale() const
{
return _hidden_state_scale;
}
bool has_peephole_opt() const
{
return _has_peephole_opt;
}
bool has_projection() const
{
return _has_projection;
}
bool has_cifg_opt() const
{
return _has_cifg_opt;
}
bool use_layer_norm() const
{
return _use_layer_norm;
}
private:
const T *_input_to_input_weights;
const T *_recurrent_to_input_weights;
T *_cell_to_input_weights;
const T *_input_gate_bias;
T *_cell_to_forget_weights;
T *_cell_to_output_weights;
const T *_projection_weights;
const T *_projection_bias;
T *_input_layer_norm_weights;
T *_forget_layer_norm_weights;
T *_cell_layer_norm_weights;
T *_output_layer_norm_weights;
float _cell_clip;
float _projection_clip;
float _input_intermediate_scale;
float _forget_intermediate_scale;
float _cell_intermediate_scale;
float _output_intermediate_scale;
int32_t _hidden_state_zero;
float _hidden_state_scale;
bool _has_peephole_opt;
bool _has_projection;
bool _has_cifg_opt;
bool _use_layer_norm;
};
} // namespace arm_compute
#endif /*ARM_COMPUTE_LSTMPARAMS_H */
|