1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*
* Copyright (c) 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMM_H
#define ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMM_H
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/function_info/GEMMInfo.h"
#include "arm_compute/runtime/IOperator.h"
/*
* A shallow wrapper for arm_compute::cpu::CpuGemm.
* Any new features should be added to arm_compute::cpu::CpuGemm and
* arm_compute::experimental::op::CpuGemm should remain a shallow wrapper.
*/
namespace arm_compute
{
namespace experimental
{
namespace op
{
/** Wrapper class for CpuGemm. For information on the operators,
* see "src/cpu/operators/CpuGemm.h"
*/
class CpuGemm : public IOperator
{
public:
/** Constructor **/
CpuGemm();
/** Prevent instances of this class from being copied (As this class contains pointers) */
CpuGemm(const CpuGemm &) = delete;
/** Prevent copy assignment */
CpuGemm operator=(const CpuGemm &) = delete;
/** Default move constructor */
CpuGemm(CpuGemm &&) = default;
/** Default move assignment */
CpuGemm &operator=(CpuGemm &&) = default;
/** Default destructor */
~CpuGemm() override;
/** Configure operator for a given list of arguments
*
* Valid data layouts:
* - All
*
* Valid data type configurations:
* |a |b |c |d |
* |:------------|:-----------|:---------|:--------------|
* |F32 |F32 |F32 |F32 |
* |F16 |F16 |F16 |F16 |
* |BFLOAT16 |BFLOAT16 |BFLOAT16 |FP32 |
*
* @note GEMM: General Matrix Multiply - [alpha * A * B + beta * C].
* @note GEMM: The tensors a, b, c, d must have the same data type. You should not mix data types when calling this function.
*
* @note Batched GEMM only supports broadcasting cases where RHS rank < LHS rank but not the other way around
*
* @param[in] a First input tensor info (Matrix A or Vector A). Data type supported: BFLOAT16/F16/F32
* @param[in] b Second input tensor info (Matrix B). Data type supported: same as @p a
* @param[in] c Third input tensor info (Matrix C). It can be a nullptr if just the multiplication between @p a and @p b is needed. Data type supported: same as @p a
* @param[out] d Output tensor info. Data type supported: same as @p a
* @param[in] alpha Weight of the matrix product
* @param[in] beta Weight of matrix C
* @param[in, out] gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
* if the reshape of matrix B should happen only for the first run
*/
void configure(const ITensorInfo *a,
const ITensorInfo *b,
const ITensorInfo *c,
ITensorInfo *d,
float alpha,
float beta,
const GEMMInfo &gemm_info = GEMMInfo());
/** Static function to check if given info will lead to a valid configuration of @ref CpuGemm.
*
* Similar to @ref CpuGemm::configure()
*
* @return a status
*/
static Status validate(const ITensorInfo *a,
const ITensorInfo *b,
const ITensorInfo *c,
const ITensorInfo *d,
float alpha,
float beta,
const GEMMInfo &gemm_info = GEMMInfo());
/** Indicates whether or not there is an optimal assembly implementation that can be used to process the given parameters.
*
* This method has the same use of @ref
* NEGEMMConvolutionLayer::has_opt_impl, with the only caveat that
* the value of arm_compute::WeightFormat need to be passed via the
* parameter gemm_info.
*/
static Status has_opt_impl(arm_compute::WeightFormat &weight_format,
const ITensorInfo *a,
const ITensorInfo *b,
const ITensorInfo *c,
const ITensorInfo *d,
const GEMMInfo &gemm_info = GEMMInfo());
void run(ITensorPack &tensors) override;
void prepare(ITensorPack &constants) override;
experimental::MemoryRequirements workspace() const override;
private:
struct Impl;
std::unique_ptr<Impl> _impl;
};
} // namespace op
} // namespace experimental
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMM_H
|