1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/*
* Copyright (c) 2021-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMMCONV2D_H
#define ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMMCONV2D_H
#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/IOperator.h"
#include <memory>
namespace arm_compute
{
namespace experimental
{
namespace op
{
/*
* A shallow wrapper for arm_compute::cpu::CpuGemmConv2d.
* Any new features should be added to arm_compute::cpu::CpuGemmConv2d and
* arm_compute::experimental::op::CpuGemmConv2d should remain a shallow wrapper.
*/
class CpuGemmConv2d : public IOperator
{
public:
/** Constructor */
CpuGemmConv2d();
/** Prevent instances of this class from being copied (As this class contains pointers) */
CpuGemmConv2d(const CpuGemmConv2d &) = delete;
/** Prevent instances of this class from being moved (As this class contains non movable objects) */
CpuGemmConv2d(CpuGemmConv2d &&) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
CpuGemmConv2d &operator=(const CpuGemmConv2d &) = delete;
/** Prevent instances of this class from being moved (As this class contains non movable objects) */
CpuGemmConv2d &operator=(CpuGemmConv2d &&) = delete;
/** Destructor */
~CpuGemmConv2d();
/** Set the input and output tensors.
*
* Valid data layouts:
* - NHWC
* - NCHW
*
* Valid data type configurations:
* |src0 |src1 |src2 |dst |
* |:--------------|:------------------|:--------|:--------------|
* |F16 |F16 |F16 |F16 |
* |F32 |F32 |F32 |F32 |
* |BFLOAT16 |BFLOAT16 |BFLOAT16 |BFLOAT16 |
* |QASYMM8 |QASYMM8 |S32 |QASYMM8 |
* |QASYMM8 |QASYMM8_SIGNED |S32 |QASYMM8 |
* |QASYMM8 |QSYMM8_PER_CHANNEL |S32 |QASYMM8 |
* |QASYMM8_SIGNED |QASYMM8_SIGNED |S32 |QASYMM8_SIGNED |
* |QASYMM8_SIGNED |QSYMM8_PER_CHANNEL |S32 |QASYMM8_SIGNED |
*
* @param[in] src Source tensor info. 3 lower dimensions represent a single input [width, height, IFM],
* while every optional dimension from 4 and above represent a batch of inputs.
* Data types supported: QASYMM8/QASYMM8_SIGNED/BFLOAT16/F16/F32.
* @param[in] weights Weights tensor info. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
* Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/BFLOAT16/F16/F32.
* @param[in] biases Biases tensor info. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
* Data type supported: Should match @p input data type, except for input of QASYMM8/QASYMM8_SIGNED type where biases should be of S32 type.
* @param[out] dst Destination tensor info. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
* Data types supported: Same as @p input.
* @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo.
* @param[in] weights_info Specifies if the weights tensor has been reshaped with CpuWeightsReshapeKernel. If this is not part of the fully connected layer the weights
* tensor has also been transposed with cpu::kernels::CpuGemmTranspose1xWKernel. Data type supported: Same as @p input.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
* @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU supported.
* @param[in] enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
* available which may introduce a drop of accuracy as well. Default is false
* @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is not supported
*/
void configure(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
ITensorInfo *dst,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info = WeightsInfo(),
const Size2D &dilation = Size2D(1U, 1U),
const ActivationLayerInfo &act_info = ActivationLayerInfo(),
bool enable_fast_math = false,
unsigned int num_groups = 1);
/** Static function to check if given info will lead to a valid configuration
*
* Similar to CpuGemmConvolution::configure()
*
* @return a status
*/
static Status validate(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *output,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info = WeightsInfo(),
const Size2D &dilation = Size2D(1U, 1U),
const ActivationLayerInfo &act_info = ActivationLayerInfo(),
bool enable_fast_math = false,
unsigned int num_groups = 1);
/** Indicates whether or not there is an optimal assembly implementation that can be used to process the given parameters.
*
* The parameter list is the same as @ref NEGEMMConvolutionLayer::has_opt_impl
*
* @return a status.
*/
static Status has_opt_impl(arm_compute::WeightFormat &expected_weight_format,
const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *output,
const PadStrideInfo &conv_info,
const WeightsInfo &weights_info = WeightsInfo(),
const Size2D &dilation = Size2D(1U, 1U),
const ActivationLayerInfo &act_info = ActivationLayerInfo(),
bool enable_fast_math = false);
/** Update of quantization information at the run stage for convolution so that the quantization multipliers can be properly calculated.
* Please @ref NEGEMMConvolutionLayer for a more in-depth explanation and example.
*
* @param[in] tensors Vector that contains the tensors to operate on.
*/
void update_quantization_parameters(ITensorPack &tensors);
void run(ITensorPack &tensors) override;
void prepare(ITensorPack &tensors) override;
experimental::MemoryRequirements workspace() const override;
private:
struct Impl;
std::unique_ptr<Impl> _impl;
};
} // namespace op
} // namespace experimental
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMMCONV2D_H
|