File: CpuGemmConv2d.h

package info (click to toggle)
arm-compute-library 24.11%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 53,700 kB
  • sloc: cpp: 758,049; lisp: 31,807; ansic: 19,046; python: 3,141; sh: 410; xml: 199; makefile: 48
file content (158 lines) | stat: -rw-r--r-- 9,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
 * Copyright (c) 2021-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMMCONV2D_H
#define ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMMCONV2D_H

#include "arm_compute/core/ITensorPack.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/IOperator.h"

#include <memory>

namespace arm_compute
{
namespace experimental
{
namespace op
{
/*
 * A shallow wrapper for arm_compute::cpu::CpuGemmConv2d.
 * Any new features should be added to arm_compute::cpu::CpuGemmConv2d and
 * arm_compute::experimental::op::CpuGemmConv2d should remain a shallow wrapper.
*/
class CpuGemmConv2d : public IOperator
{
public:
    /** Constructor */
    CpuGemmConv2d();
    /** Prevent instances of this class from being copied (As this class contains pointers) */
    CpuGemmConv2d(const CpuGemmConv2d &) = delete;
    /** Prevent instances of this class from being moved (As this class contains non movable objects) */
    CpuGemmConv2d(CpuGemmConv2d &&) = delete;
    /** Prevent instances of this class from being copied (As this class contains pointers) */
    CpuGemmConv2d &operator=(const CpuGemmConv2d &) = delete;
    /** Prevent instances of this class from being moved (As this class contains non movable objects) */
    CpuGemmConv2d &operator=(CpuGemmConv2d &&) = delete;
    /** Destructor */
    ~CpuGemmConv2d();
    /** Set the input and output tensors.
     *
     * Valid data layouts:
     * - NHWC
     * - NCHW
     *
     * Valid data type configurations:
     * |src0           |src1               |src2     |dst            |
     * |:--------------|:------------------|:--------|:--------------|
     * |F16            |F16                |F16      |F16            |
     * |F32            |F32                |F32      |F32            |
     * |BFLOAT16       |BFLOAT16           |BFLOAT16 |BFLOAT16       |
     * |QASYMM8        |QASYMM8            |S32      |QASYMM8        |
     * |QASYMM8        |QASYMM8_SIGNED     |S32      |QASYMM8        |
     * |QASYMM8        |QSYMM8_PER_CHANNEL |S32      |QASYMM8        |
     * |QASYMM8_SIGNED |QASYMM8_SIGNED     |S32      |QASYMM8_SIGNED |
     * |QASYMM8_SIGNED |QSYMM8_PER_CHANNEL |S32      |QASYMM8_SIGNED |
     *
     * @param[in]  src              Source tensor info. 3 lower dimensions represent a single input [width, height, IFM],
     *                              while every optional dimension from 4 and above represent a batch of inputs.
     *                              Data types supported: QASYMM8/QASYMM8_SIGNED/BFLOAT16/F16/F32.
     * @param[in]  weights          Weights tensor info. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
     *                              Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/BFLOAT16/F16/F32.
     * @param[in]  biases           Biases tensor info. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
     *                              Data type supported: Should match @p input data type, except for input of QASYMM8/QASYMM8_SIGNED type where biases should be of S32 type.
     * @param[out] dst              Destination tensor info. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
     *                              Data types supported: Same as @p input.
     * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
     * @param[in]  weights_info     Specifies if the weights tensor has been reshaped with CpuWeightsReshapeKernel. If this is not part of the fully connected layer the weights
     *                              tensor has also been transposed with cpu::kernels::CpuGemmTranspose1xWKernel. Data type supported: Same as @p input.
     * @param[in]  dilation         (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
     * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU supported.
     * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
     *                              available which may introduce a drop of accuracy as well. Default is false
     * @param[in]  num_groups       (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is not supported
     */
    void configure(const ITensorInfo         *src,
                   const ITensorInfo         *weights,
                   const ITensorInfo         *biases,
                   ITensorInfo               *dst,
                   const PadStrideInfo       &conv_info,
                   const WeightsInfo         &weights_info     = WeightsInfo(),
                   const Size2D              &dilation         = Size2D(1U, 1U),
                   const ActivationLayerInfo &act_info         = ActivationLayerInfo(),
                   bool                       enable_fast_math = false,
                   unsigned int               num_groups       = 1);
    /** Static function to check if given info will lead to a valid configuration
     *
     * Similar to CpuGemmConvolution::configure()
     *
     * @return a status
     */
    static Status validate(const ITensorInfo         *src,
                           const ITensorInfo         *weights,
                           const ITensorInfo         *biases,
                           const ITensorInfo         *output,
                           const PadStrideInfo       &conv_info,
                           const WeightsInfo         &weights_info     = WeightsInfo(),
                           const Size2D              &dilation         = Size2D(1U, 1U),
                           const ActivationLayerInfo &act_info         = ActivationLayerInfo(),
                           bool                       enable_fast_math = false,
                           unsigned int               num_groups       = 1);

    /** Indicates whether or not there is an optimal assembly implementation that can be used to process the given parameters.
     *
     * The parameter list is the same as @ref NEGEMMConvolutionLayer::has_opt_impl
     *
     * @return a status.
     */
    static Status has_opt_impl(arm_compute::WeightFormat &expected_weight_format,
                               const ITensorInfo         *src,
                               const ITensorInfo         *weights,
                               const ITensorInfo         *biases,
                               const ITensorInfo         *output,
                               const PadStrideInfo       &conv_info,
                               const WeightsInfo         &weights_info     = WeightsInfo(),
                               const Size2D              &dilation         = Size2D(1U, 1U),
                               const ActivationLayerInfo &act_info         = ActivationLayerInfo(),
                               bool                       enable_fast_math = false);

    /** Update of quantization information at the run stage for convolution so that the quantization multipliers can be properly calculated.
     * Please @ref NEGEMMConvolutionLayer for a more in-depth explanation and example.
     *
     * @param[in] tensors Vector that contains the tensors to operate on.
     */
    void update_quantization_parameters(ITensorPack &tensors);

    void                             run(ITensorPack &tensors) override;
    void                             prepare(ITensorPack &tensors) override;
    experimental::MemoryRequirements workspace() const override;

private:
    struct Impl;
    std::unique_ptr<Impl> _impl;
};
} // namespace op
} // namespace experimental
} // namespace arm_compute
#endif // ACL_ARM_COMPUTE_RUNTIME_EXPERIMENTAL_OPERATORS_CPUGEMMCONV2D_H