1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/runtime/CL/Utils.h"
#endif /* ARM_COMPUTE_CL */
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute;
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API */
class GraphAlexnetExample : public Example
{
public:
GraphAlexnetExample() : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
{
}
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if (common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Checks
ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type),
"QASYMM8 not supported for this graph");
// Print parameter values
std::cout << common_params << std::endl;
// Get trainable parameters data path
std::string data_path = common_params.data_path;
// Create a preprocessor object
const std::array<float, 3> mean_rgb{{122.68f, 116.67f, 104.01f}};
std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
// Create input descriptor
const auto operation_layout = common_params.data_layout;
const TensorShape tensor_shape =
permute_shape(TensorShape(227U, 227U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
TensorDescriptor input_descriptor =
TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
graph
<< common_params.target << common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
// Layer 1
<< ConvolutionLayer(11U, 11U, 96U,
get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
PadStrideInfo(4, 4, 0, 0))
.set_name("conv1")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
<< NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0)))
.set_name("pool1")
// Layer 2
<< ConvolutionLayer(
5U, 5U, 256U, get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"), PadStrideInfo(1, 1, 2, 2), 2)
.set_name("conv2")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
<< NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0)))
.set_name("pool2")
// Layer 3
<< ConvolutionLayer(
3U, 3U, 384U, get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"), PadStrideInfo(1, 1, 1, 1))
.set_name("conv3")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
// Layer 4
<< ConvolutionLayer(
3U, 3U, 384U, get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"), PadStrideInfo(1, 1, 1, 1), 2)
.set_name("conv4")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
// Layer 5
<< ConvolutionLayer(
3U, 3U, 256U, get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"), PadStrideInfo(1, 1, 1, 1), 2)
.set_name("conv5")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0)))
.set_name("pool5")
// Layer 6
<< FullyConnectedLayer(4096U,
get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
.set_name("fc6")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
// Layer 7
<< FullyConnectedLayer(4096U,
get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
.set_name("fc7")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
// Layer 8
<< FullyConnectedLayer(1000U,
get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
.set_name("fc8")
// Softmax
<< SoftmaxLayer().set_name("prob") << OutputLayer(get_output_accessor(common_params, 5));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
config.mlgo_file = common_params.mlgo_file;
// Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
// compilation won't be required.
if (common_params.enable_cl_cache)
{
#ifdef ARM_COMPUTE_CL
restore_program_cache_from_file();
#endif /* ARM_COMPUTE_CL */
}
graph.finalize(common_params.target, config);
// Save the opencl kernels to a file
if (common_opts.enable_cl_cache)
{
#ifdef ARM_COMPUTE_CL
save_program_cache_to_file();
#endif /* ARM_COMPUTE_CL */
}
return true;
}
void do_run() override
{
// Run graph
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
CommonGraphParams common_params;
Stream graph;
};
/** Main program for AlexNet
*
* Model is based on:
* https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
* "ImageNet Classification with Deep Convolutional Neural Networks"
* Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E
*
* Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*
* @return Return code
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
}
|