1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement LeNet's network using the Compute Library's graph API */
class GraphLenetExample : public Example
{
public:
GraphLenetExample() : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "LeNet")
{
}
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if (common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Checks
ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type),
"QASYMM8 not supported for this graph");
// Print parameter values
std::cout << common_params << std::endl;
// Get trainable parameters data path
std::string data_path = common_params.data_path;
unsigned int batches = 4; /** Number of batches */
// Create input descriptor
const auto operation_layout = common_params.data_layout;
const TensorShape tensor_shape =
permute_shape(TensorShape(28U, 28U, 1U, batches), DataLayout::NCHW, operation_layout);
TensorDescriptor input_descriptor =
TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
//conv1 << pool1 << conv2 << pool2 << fc1 << act1 << fc2 << smx
graph << common_params.target << common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params))
<< ConvolutionLayer(
5U, 5U, 20U, get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_b.npy"), PadStrideInfo(1, 1, 0, 0))
.set_name("conv1")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0)))
.set_name("pool1")
<< ConvolutionLayer(
5U, 5U, 50U, get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_b.npy"), PadStrideInfo(1, 1, 0, 0))
.set_name("conv2")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0)))
.set_name("pool2")
<< FullyConnectedLayer(500U,
get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_b.npy"))
.set_name("ip1")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu")
<< FullyConnectedLayer(10U,
get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_w.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_b.npy"))
.set_name("ip2")
<< SoftmaxLayer().set_name("prob") << OutputLayer(get_output_accessor(common_params));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
config.mlgo_file = common_params.mlgo_file;
graph.finalize(common_params.target, config);
return true;
}
void do_run() override
{
// Run graph
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
CommonGraphParams common_params;
Stream graph;
};
/** Main program for LeNet
*
* Model is based on:
* http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
* "Gradient-Based Learning Applied to Document Recognition"
* Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner
*
* The original model uses tanh instead of relu activations. However the use of relu activations in lenet has been
* widely adopted to improve accuracy.*
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<GraphLenetExample>(argc, argv);
}
|