1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute;
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement VGG based VDSR network using the Compute Library's graph API */
class GraphVDSRExample : public Example
{
public:
GraphVDSRExample() : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VDSR")
{
model_input_width = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 192);
model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 192);
// Add model id option
model_input_width->set_help("Input image width.");
model_input_height->set_help("Input image height.");
}
GraphVDSRExample(const GraphVDSRExample &) = delete;
GraphVDSRExample &operator=(const GraphVDSRExample &) = delete;
~GraphVDSRExample() override = default;
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if (common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Get input image width and height
const unsigned int image_width = model_input_width->value();
const unsigned int image_height = model_input_height->value();
// Print parameter values
std::cout << common_params << std::endl;
std::cout << "Image width: " << image_width << std::endl;
std::cout << "Image height: " << image_height << std::endl;
// Get trainable parameters data path
const std::string data_path = common_params.data_path;
const std::string model_path = "/cnn_data/vdsr_model/";
// Create a preprocessor object
std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
// Create input descriptor
const TensorShape tensor_shape =
permute_shape(TensorShape(image_width, image_height, 1U, common_params.batches), DataLayout::NCHW,
common_params.data_layout);
TensorDescriptor input_descriptor =
TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
// Note: Quantization info are random and used only for benchmarking purposes
graph << common_params.target << common_params.fast_math_hint
<< InputLayer(input_descriptor.set_quantization_info(QuantizationInfo(0.0078125f, 128)),
get_input_accessor(common_params, std::move(preprocessor), false));
SubStream left(graph);
SubStream right(graph);
// Layer 1
right << ConvolutionLayer(3U, 3U, 64U, get_weights_accessor(data_path, "conv0_w.npy", weights_layout),
get_weights_accessor(data_path, "conv0_b.npy"), PadStrideInfo(1, 1, 1, 1), 1,
QuantizationInfo(0.031778190285f, 156), QuantizationInfo(0.0784313753247f, 128))
.set_name("conv0")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
.set_name("conv0/Relu");
// Rest 17 layers
for (unsigned int i = 1; i < 19; ++i)
{
const std::string conv_w_path = "conv" + arm_compute::support::cpp11::to_string(i) + "_w.npy";
const std::string conv_b_path = "conv" + arm_compute::support::cpp11::to_string(i) + "_b.npy";
const std::string conv_name = "conv" + arm_compute::support::cpp11::to_string(i);
right << ConvolutionLayer(3U, 3U, 64U, get_weights_accessor(data_path, conv_w_path, weights_layout),
get_weights_accessor(data_path, conv_b_path), PadStrideInfo(1, 1, 1, 1), 1,
QuantizationInfo(0.015851572156f, 93))
.set_name(conv_name)
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
.set_name(conv_name + "/Relu");
}
// Final layer
right << ConvolutionLayer(3U, 3U, 1U, get_weights_accessor(data_path, "conv20_w.npy", weights_layout),
get_weights_accessor(data_path, "conv20_b.npy"), PadStrideInfo(1, 1, 1, 1), 1,
QuantizationInfo(0.015851572156f, 93))
.set_name("conv20")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
.set_name("conv20/Relu");
// Add residual to input
graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name("add")
<< OutputLayer(std::make_unique<DummyAccessor>(0));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
config.mlgo_file = common_params.mlgo_file;
config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
config.synthetic_type = common_params.data_type;
graph.finalize(common_params.target, config);
return true;
}
void do_run() override
{
// Run graph
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
SimpleOption<unsigned int> *model_input_width{nullptr};
SimpleOption<unsigned int> *model_input_height{nullptr};
CommonGraphParams common_params;
Stream graph;
};
/** Main program for VGG-based VDSR
*
* Model is based on:
* https://arxiv.org/pdf/1511.04587.pdf
* "Accurate Image Super-Resolution Using Very Deep Convolutional Networks"
* Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<GraphVDSRExample>(argc, argv);
}
|