1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*
* Copyright (c) 2016-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/Allocator.h"
#include "arm_compute/runtime/BlobLifetimeManager.h"
#include "arm_compute/runtime/MemoryManagerOnDemand.h"
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "arm_compute/runtime/PoolManager.h"
#include "utils/Utils.h"
using namespace arm_compute;
using namespace utils;
class NEONCNNExample : public Example
{
public:
bool do_setup(int argc, char **argv) override
{
ARM_COMPUTE_UNUSED(argc);
ARM_COMPUTE_UNUSED(argv);
// Create memory manager components
// We need 2 memory managers: 1 for handling the tensors within the functions (mm_layers) and 1 for handling the input and output tensors of the functions (mm_transitions))
auto lifetime_mgr0 = std::make_shared<BlobLifetimeManager>(); // Create lifetime manager
auto lifetime_mgr1 = std::make_shared<BlobLifetimeManager>(); // Create lifetime manager
auto pool_mgr0 = std::make_shared<PoolManager>(); // Create pool manager
auto pool_mgr1 = std::make_shared<PoolManager>(); // Create pool manager
auto mm_layers = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr0, pool_mgr0); // Create the memory manager
auto mm_transitions =
std::make_shared<MemoryManagerOnDemand>(lifetime_mgr1, pool_mgr1); // Create the memory manager
// The weights and biases tensors should be initialized with the values inferred with the training
// Set memory manager where allowed to manage internal memory requirements
conv0 = std::make_unique<NEConvolutionLayer>(mm_layers);
conv1 = std::make_unique<NEConvolutionLayer>(mm_layers);
fc0 = std::make_unique<NEFullyConnectedLayer>(mm_layers);
softmax = std::make_unique<NESoftmaxLayer>(mm_layers);
/* [Initialize tensors] */
// Initialize src tensor
constexpr unsigned int width_src_image = 32;
constexpr unsigned int height_src_image = 32;
constexpr unsigned int ifm_src_img = 1;
const TensorShape src_shape(width_src_image, height_src_image, ifm_src_img);
src.allocator()->init(TensorInfo(src_shape, 1, DataType::F32));
// Initialize tensors of conv0
constexpr unsigned int kernel_x_conv0 = 5;
constexpr unsigned int kernel_y_conv0 = 5;
constexpr unsigned int ofm_conv0 = 8;
const TensorShape weights_shape_conv0(kernel_x_conv0, kernel_y_conv0, src_shape.z(), ofm_conv0);
const TensorShape biases_shape_conv0(weights_shape_conv0[3]);
const TensorShape out_shape_conv0(src_shape.x(), src_shape.y(), weights_shape_conv0[3]);
weights0.allocator()->init(TensorInfo(weights_shape_conv0, 1, DataType::F32));
biases0.allocator()->init(TensorInfo(biases_shape_conv0, 1, DataType::F32));
out_conv0.allocator()->init(TensorInfo(out_shape_conv0, 1, DataType::F32));
// Initialize tensor of act0
out_act0.allocator()->init(TensorInfo(out_shape_conv0, 1, DataType::F32));
// Initialize tensor of pool0
TensorShape out_shape_pool0 = out_shape_conv0;
out_shape_pool0.set(0, out_shape_pool0.x() / 2);
out_shape_pool0.set(1, out_shape_pool0.y() / 2);
out_pool0.allocator()->init(TensorInfo(out_shape_pool0, 1, DataType::F32));
// Initialize tensors of conv1
constexpr unsigned int kernel_x_conv1 = 3;
constexpr unsigned int kernel_y_conv1 = 3;
constexpr unsigned int ofm_conv1 = 16;
const TensorShape weights_shape_conv1(kernel_x_conv1, kernel_y_conv1, out_shape_pool0.z(), ofm_conv1);
const TensorShape biases_shape_conv1(weights_shape_conv1[3]);
const TensorShape out_shape_conv1(out_shape_pool0.x(), out_shape_pool0.y(), weights_shape_conv1[3]);
weights1.allocator()->init(TensorInfo(weights_shape_conv1, 1, DataType::F32));
biases1.allocator()->init(TensorInfo(biases_shape_conv1, 1, DataType::F32));
out_conv1.allocator()->init(TensorInfo(out_shape_conv1, 1, DataType::F32));
// Initialize tensor of act1
out_act1.allocator()->init(TensorInfo(out_shape_conv1, 1, DataType::F32));
// Initialize tensor of pool1
TensorShape out_shape_pool1 = out_shape_conv1;
out_shape_pool1.set(0, out_shape_pool1.x() / 2);
out_shape_pool1.set(1, out_shape_pool1.y() / 2);
out_pool1.allocator()->init(TensorInfo(out_shape_pool1, 1, DataType::F32));
// Initialize tensor of fc0
constexpr unsigned int num_labels = 128;
const TensorShape weights_shape_fc0(out_shape_pool1.x() * out_shape_pool1.y() * out_shape_pool1.z(),
num_labels);
const TensorShape biases_shape_fc0(num_labels);
const TensorShape out_shape_fc0(num_labels);
weights2.allocator()->init(TensorInfo(weights_shape_fc0, 1, DataType::F32));
biases2.allocator()->init(TensorInfo(biases_shape_fc0, 1, DataType::F32));
out_fc0.allocator()->init(TensorInfo(out_shape_fc0, 1, DataType::F32));
// Initialize tensor of act2
out_act2.allocator()->init(TensorInfo(out_shape_fc0, 1, DataType::F32));
// Initialize tensor of softmax
const TensorShape out_shape_softmax(out_shape_fc0.x());
out_softmax.allocator()->init(TensorInfo(out_shape_softmax, 1, DataType::F32));
constexpr auto data_layout = DataLayout::NCHW;
/* -----------------------End: [Initialize tensors] */
/* [Configure functions] */
// in:32x32x1: 5x5 convolution, 8 output features maps (OFM)
conv0->configure(&src, &weights0, &biases0, &out_conv0,
PadStrideInfo(1 /* stride_x */, 1 /* stride_y */, 2 /* pad_x */, 2 /* pad_y */));
// in:32x32x8, out:32x32x8, Activation function: relu
act0.configure(&out_conv0, &out_act0, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// in:32x32x8, out:16x16x8 (2x2 pooling), Pool type function: Max
pool0.configure(
&out_act0, &out_pool0,
PoolingLayerInfo(PoolingType::MAX, 2, data_layout, PadStrideInfo(2 /* stride_x */, 2 /* stride_y */)));
// in:16x16x8: 3x3 convolution, 16 output features maps (OFM)
conv1->configure(&out_pool0, &weights1, &biases1, &out_conv1,
PadStrideInfo(1 /* stride_x */, 1 /* stride_y */, 1 /* pad_x */, 1 /* pad_y */));
// in:16x16x16, out:16x16x16, Activation function: relu
act1.configure(&out_conv1, &out_act1, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// in:16x16x16, out:8x8x16 (2x2 pooling), Pool type function: Average
pool1.configure(
&out_act1, &out_pool1,
PoolingLayerInfo(PoolingType::AVG, 2, data_layout, PadStrideInfo(2 /* stride_x */, 2 /* stride_y */)));
// in:8x8x16, out:128
fc0->configure(&out_pool1, &weights2, &biases2, &out_fc0);
// in:128, out:128, Activation function: relu
act2.configure(&out_fc0, &out_act2, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// in:128, out:128
softmax->configure(&out_act2, &out_softmax);
/* -----------------------End: [Configure functions] */
/*[ Add tensors to memory manager ]*/
// We need 2 memory groups for handling the input and output
// We call explicitly allocate after manage() in order to avoid overlapping lifetimes
memory_group0 = std::make_unique<MemoryGroup>(mm_transitions);
memory_group1 = std::make_unique<MemoryGroup>(mm_transitions);
memory_group0->manage(&out_conv0);
out_conv0.allocator()->allocate();
memory_group1->manage(&out_act0);
out_act0.allocator()->allocate();
memory_group0->manage(&out_pool0);
out_pool0.allocator()->allocate();
memory_group1->manage(&out_conv1);
out_conv1.allocator()->allocate();
memory_group0->manage(&out_act1);
out_act1.allocator()->allocate();
memory_group1->manage(&out_pool1);
out_pool1.allocator()->allocate();
memory_group0->manage(&out_fc0);
out_fc0.allocator()->allocate();
memory_group1->manage(&out_act2);
out_act2.allocator()->allocate();
memory_group0->manage(&out_softmax);
out_softmax.allocator()->allocate();
/* -----------------------End: [ Add tensors to memory manager ] */
/* [Allocate tensors] */
// Now that the padding requirements are known we can allocate all tensors
src.allocator()->allocate();
weights0.allocator()->allocate();
weights1.allocator()->allocate();
weights2.allocator()->allocate();
biases0.allocator()->allocate();
biases1.allocator()->allocate();
biases2.allocator()->allocate();
/* -----------------------End: [Allocate tensors] */
// Populate the layers manager. (Validity checks, memory allocations etc)
mm_layers->populate(allocator, 1 /* num_pools */);
// Populate the transitions manager. (Validity checks, memory allocations etc)
mm_transitions->populate(allocator, 2 /* num_pools */);
return true;
}
void do_run() override
{
// Acquire memory for the memory groups
memory_group0->acquire();
memory_group1->acquire();
conv0->run();
act0.run();
pool0.run();
conv1->run();
act1.run();
pool1.run();
fc0->run();
act2.run();
softmax->run();
// Release memory
memory_group0->release();
memory_group1->release();
}
private:
// The src tensor should contain the input image
Tensor src{};
// Intermediate tensors used
Tensor weights0{};
Tensor weights1{};
Tensor weights2{};
Tensor biases0{};
Tensor biases1{};
Tensor biases2{};
Tensor out_conv0{};
Tensor out_conv1{};
Tensor out_act0{};
Tensor out_act1{};
Tensor out_act2{};
Tensor out_pool0{};
Tensor out_pool1{};
Tensor out_fc0{};
Tensor out_softmax{};
// Allocator
Allocator allocator{};
// Memory groups
std::unique_ptr<MemoryGroup> memory_group0{};
std::unique_ptr<MemoryGroup> memory_group1{};
// Layers
std::unique_ptr<NEConvolutionLayer> conv0{};
std::unique_ptr<NEConvolutionLayer> conv1{};
std::unique_ptr<NEFullyConnectedLayer> fc0{};
std::unique_ptr<NESoftmaxLayer> softmax{};
NEPoolingLayer pool0{};
NEPoolingLayer pool1{};
NEActivationLayer act0{};
NEActivationLayer act1{};
NEActivationLayer act2{};
};
/** Main program for cnn test
*
* The example implements the following CNN architecture:
*
* Input -> conv0:5x5 -> act0:relu -> pool:2x2 -> conv1:3x3 -> act1:relu -> pool:2x2 -> fc0 -> act2:relu -> softmax
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return utils::run_example<NEONCNNExample>(argc, argv);
}
|