1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#!/usr/bin/env python3
# Copyright (c) 2021 Arm Limited.
#
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import json
import logging
import os
import sys
from argparse import ArgumentParser
import tflite
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../")
from utils.model_identification import identify_model_type
from utils.tflite_helpers import tflite_op2acl, tflite_typecode2name, tflite_typecode2aclname
SUPPORTED_MODEL_TYPES = ["tflite"]
logger = logging.getLogger("report_model_ops")
def get_ops_types_from_tflite_graph(model):
"""
Helper function that extract operator related meta-data from a TFLite model
Parameters
----------
model: str
Respective TFLite model to analyse
Returns
----------
supported_ops, unsupported_ops, data_types: tuple
A tuple with the sets of unique operator types and data-types that are present in the model
"""
logger.debug(f"Analysing TFLite mode '{model}'!")
with open(model, "rb") as f:
buf = f.read()
model = tflite.Model.GetRootAsModel(buf, 0)
# Extract unique operators
nr_unique_ops = model.OperatorCodesLength()
unique_ops = {tflite.opcode2name(model.OperatorCodes(op_id).BuiltinCode()) for op_id in range(0, nr_unique_ops)}
# Extract IO data-types
supported_data_types = set()
unsupported_data_types = set()
for subgraph_id in range(0, model.SubgraphsLength()):
subgraph = model.Subgraphs(subgraph_id)
for tensor_id in range(0, subgraph.TensorsLength()):
try:
supported_data_types.add(tflite_typecode2aclname(subgraph.Tensors(tensor_id).Type()))
except ValueError:
unsupported_data_types.add(tflite_typecode2name(subgraph.Tensors(tensor_id).Type()))
logger.warning(f"Data type {tflite_typecode2name(subgraph.Tensors(tensor_id).Type())} is not supported by ComputeLibrary")
# Perform mapping between TfLite ops to ComputeLibrary ones
supported_ops = set()
unsupported_ops = set()
for top in unique_ops:
try:
supported_ops.add(tflite_op2acl(top))
except ValueError:
unsupported_ops.add(top)
logger.warning(f"Operator {top} does not have ComputeLibrary mapping")
return (supported_ops, unsupported_ops, supported_data_types, unsupported_data_types)
def extract_model_meta(model, model_type):
"""
Function that calls the appropriate model parser to extract model related meta-data
Supported parsers: TFLite
Parameters
----------
model: str
Path to model that we want to analyze
model_type:
type of the model
Returns
----------
ops, data_types: (tuple)
A tuple with the list of unique operator types and data-types that are present in the model
"""
if model_type == "tflite":
return get_ops_types_from_tflite_graph(model)
else:
logger.warning(f"Model type '{model_type}' is unsupported!")
return ()
def generate_build_config(ops, data_types, data_layouts):
"""
Function that generates a compatible ComputeLibrary operator-based build configuration
Parameters
----------
ops: set
Set with the operators to add in the build configuration
data_types:
Set with the data types to add in the build configuration
data_layouts:
Set with the data layouts to add in the build configuration
Returns
----------
config_data: dict
Dictionary compatible with ComputeLibrary
"""
config_data = {}
config_data["operators"] = list(ops)
config_data["data_types"] = list(data_types)
config_data["data_layouts"] = list(data_layouts)
return config_data
if __name__ == "__main__":
parser = ArgumentParser(
description="""Report map of operations in a list of models.
The script consumes deep learning models and reports the type of operations and data-types used
Supported model types: TFLite """
)
parser.add_argument(
"-m",
"--models",
nargs="+",
required=True,
type=str,
help=f"List of models; supported model types: {SUPPORTED_MODEL_TYPES}",
)
parser.add_argument("-D", "--debug", action="store_true", help="Enable script debugging output")
parser.add_argument(
"-c",
"--config",
type=str,
help="JSON configuration file used that can be used for custom ComputeLibrary builds",
)
args = parser.parse_args()
# Setup Logger
logging_level = logging.INFO
if args.debug:
logging_level = logging.DEBUG
logging.basicConfig(level=logging_level)
# Extract operator mapping
final_supported_ops = set()
final_unsupported_ops = set()
final_supported_dts = set()
final_unsupported_dts = set()
final_layouts = {"nhwc"} # Data layout for TFLite is always NHWC
for model in args.models:
logger.debug(f"Starting analyzing {model} model")
model_type = identify_model_type(model)
supported_model_ops, unsupported_mode_ops, supported_model_dts, unsupported_model_dts = extract_model_meta(model, model_type)
final_supported_ops.update(supported_model_ops)
final_unsupported_ops.update(unsupported_mode_ops)
final_supported_dts.update(supported_model_dts)
final_unsupported_dts.update(unsupported_model_dts)
logger.info("=== Supported Operators")
logger.info(final_supported_ops)
if(len(final_unsupported_ops)):
logger.info("=== Unsupported Operators")
logger.info(final_unsupported_ops)
logger.info("=== Data Types")
logger.info(final_supported_dts)
if(len(final_unsupported_dts)):
logger.info("=== Unsupported Data Types")
logger.info(final_unsupported_dts)
logger.info("=== Data Layouts")
logger.info(final_layouts)
# Generate JSON file
if args.config:
logger.debug("Generating JSON build configuration file")
config_data = generate_build_config(final_supported_ops, final_supported_dts, final_layouts)
with open(args.config, "w") as f:
json.dump(config_data, f)
|