1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*
* Copyright (c) 2018 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_LSTM_LAYER_DATASET
#define ARM_COMPUTE_TEST_LSTM_LAYER_DATASET
#include "utils/TypePrinter.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
namespace arm_compute
{
namespace test
{
namespace datasets
{
class LSTMLayerDataset
{
public:
using type = std::tuple<TensorShape, TensorShape, TensorShape, TensorShape, TensorShape, TensorShape, TensorShape, ActivationLayerInfo, float, float>;
struct iterator
{
iterator(std::vector<TensorShape>::const_iterator src_it,
std::vector<TensorShape>::const_iterator input_weights_it,
std::vector<TensorShape>::const_iterator recurrent_weights_it,
std::vector<TensorShape>::const_iterator cells_bias_it,
std::vector<TensorShape>::const_iterator output_cell_it,
std::vector<TensorShape>::const_iterator dst_it,
std::vector<TensorShape>::const_iterator scratch_it,
std::vector<ActivationLayerInfo>::const_iterator infos_it,
std::vector<float>::const_iterator cell_threshold_it,
std::vector<float>::const_iterator projection_threshold_it)
: _src_it{ std::move(src_it) },
_input_weights_it{ std::move(input_weights_it) },
_recurrent_weights_it{ std::move(recurrent_weights_it) },
_cells_bias_it{ std::move(cells_bias_it) },
_output_cell_it{ std::move(output_cell_it) },
_dst_it{ std::move(dst_it) },
_scratch_it{ std::move(scratch_it) },
_infos_it{ std::move(infos_it) },
_cell_threshold_it{ std::move(cell_threshold_it) },
_projection_threshold_it{ std::move(projection_threshold_it) }
{
}
std::string description() const
{
std::stringstream description;
description << "In=" << *_src_it << ":";
description << "InputWeights=" << *_input_weights_it << ":";
description << "RecurrentWeights=" << *_recurrent_weights_it << ":";
description << "Biases=" << *_cells_bias_it << ":";
description << "Scratch=" << *_scratch_it << ":";
description << "Out=" << *_dst_it;
return description.str();
}
LSTMLayerDataset::type operator*() const
{
return std::make_tuple(*_src_it, *_input_weights_it, *_recurrent_weights_it, *_cells_bias_it, *_output_cell_it, *_dst_it, *_scratch_it, *_infos_it, *_cell_threshold_it, *_projection_threshold_it);
}
iterator &operator++()
{
++_src_it;
++_input_weights_it;
++_recurrent_weights_it;
++_cells_bias_it;
++_output_cell_it;
++_dst_it;
++_scratch_it;
++_infos_it;
++_cell_threshold_it;
++_projection_threshold_it;
return *this;
}
private:
std::vector<TensorShape>::const_iterator _src_it;
std::vector<TensorShape>::const_iterator _input_weights_it;
std::vector<TensorShape>::const_iterator _recurrent_weights_it;
std::vector<TensorShape>::const_iterator _cells_bias_it;
std::vector<TensorShape>::const_iterator _output_cell_it;
std::vector<TensorShape>::const_iterator _dst_it;
std::vector<TensorShape>::const_iterator _scratch_it;
std::vector<ActivationLayerInfo>::const_iterator _infos_it;
std::vector<float>::const_iterator _cell_threshold_it;
std::vector<float>::const_iterator _projection_threshold_it;
};
iterator begin() const
{
return iterator(_src_shapes.begin(), _input_weights_shapes.begin(), _recurrent_weights_shapes.begin(), _cell_bias_shapes.begin(), _output_cell_shapes.begin(), _dst_shapes.begin(),
_scratch_shapes.begin(), _infos.begin(), _cell_threshold.begin(), _projection_threshold.begin());
}
int size() const
{
return std::min(_src_shapes.size(), std::min(_input_weights_shapes.size(), std::min(_recurrent_weights_shapes.size(), std::min(_cell_bias_shapes.size(), std::min(_output_cell_shapes.size(),
std::min(_dst_shapes.size(), std::min(_scratch_shapes.size(), std::min(_cell_threshold.size(), std::min(_projection_threshold.size(), _infos.size())))))))));
}
void add_config(TensorShape src, TensorShape input_weights, TensorShape recurrent_weights, TensorShape cell_bias_weights, TensorShape output_cell_state, TensorShape dst, TensorShape scratch,
ActivationLayerInfo info, float cell_threshold, float projection_threshold)
{
_src_shapes.emplace_back(std::move(src));
_input_weights_shapes.emplace_back(std::move(input_weights));
_recurrent_weights_shapes.emplace_back(std::move(recurrent_weights));
_cell_bias_shapes.emplace_back(std::move(cell_bias_weights));
_output_cell_shapes.emplace_back(std::move(output_cell_state));
_dst_shapes.emplace_back(std::move(dst));
_scratch_shapes.emplace_back(std::move(scratch));
_infos.emplace_back(std::move(info));
_cell_threshold.emplace_back(std::move(cell_threshold));
_projection_threshold.emplace_back(std::move(projection_threshold));
}
protected:
LSTMLayerDataset() = default;
LSTMLayerDataset(LSTMLayerDataset &&) = default;
private:
std::vector<TensorShape> _src_shapes{};
std::vector<TensorShape> _input_weights_shapes{};
std::vector<TensorShape> _recurrent_weights_shapes{};
std::vector<TensorShape> _cell_bias_shapes{};
std::vector<TensorShape> _output_cell_shapes{};
std::vector<TensorShape> _dst_shapes{};
std::vector<TensorShape> _scratch_shapes{};
std::vector<ActivationLayerInfo> _infos{};
std::vector<float> _cell_threshold{};
std::vector<float> _projection_threshold{};
};
class SmallLSTMLayerDataset final : public LSTMLayerDataset
{
public:
SmallLSTMLayerDataset()
{
add_config(TensorShape(8U), TensorShape(8U, 16U), TensorShape(16U, 16U), TensorShape(16U), TensorShape(16U), TensorShape(16U), TensorShape(64U),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), 0.05f, 0.93f);
add_config(TensorShape(8U, 2U), TensorShape(8U, 16U), TensorShape(16U, 16U), TensorShape(16U), TensorShape(16U, 2U), TensorShape(16U, 2U), TensorShape(64U, 2U),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), 0.05f, 0.93f);
add_config(TensorShape(8U, 2U), TensorShape(8U, 16U), TensorShape(16U, 16U), TensorShape(16U), TensorShape(16U, 2U), TensorShape(16U, 2U), TensorShape(48U, 2U),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), 0.05f, 0.93f);
}
};
} // namespace datasets
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_LSTM_LAYER_DATASET */
|