1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/*
* Copyright (c) 2019-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "tests/NEON/Accessor.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/Permute.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
#include "ValidateExample.h"
#include "graph_validate_utils.h"
#include <utility>
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
using namespace arm_compute::graph;
using namespace arm_compute;
using namespace arm_compute::test;
using namespace arm_compute::test::validation;
namespace
{
/** Convolution command line options used to configure the graph examples
*
* (Similar to common options)
* The options in this object get populated when "parse()" is called on the parser used to construct it.
* The expected workflow is:
*
* CommandLineParser parser;
* CommonOptions options( parser );
* parser.parse(argc, argv);
*/
class ConvolutionOptions final : public CommonGraphValidateOptions
{
public:
explicit ConvolutionOptions(CommandLineParser &parser) noexcept
: CommonGraphValidateOptions(parser),
width(parser.add_option<SimpleOption<int>>("width", 9)),
height(parser.add_option<SimpleOption<int>>("height", 9)),
channels(parser.add_option<SimpleOption<int>>("channels", 1)),
batch(parser.add_option<SimpleOption<int>>("batch", 1)),
weights_width(parser.add_option<SimpleOption<int>>("weights_width", 3)),
weights_height(parser.add_option<SimpleOption<int>>("weights_height", 3)),
OFM(parser.add_option<SimpleOption<int>>("OFM", 1)),
padding_top(parser.add_option<SimpleOption<int>>("padding_top", 0)),
padding_left(parser.add_option<SimpleOption<int>>("padding_left", 0)),
padding_bottom(parser.add_option<SimpleOption<int>>("padding_bottom", 0)),
padding_right(parser.add_option<SimpleOption<int>>("padding_right", 0)),
stride_x(parser.add_option<SimpleOption<int>>("stride_x", 1)),
stride_y(parser.add_option<SimpleOption<int>>("stride_y", 1)),
padding_mode(),
conv_mode(),
data_layout(),
scale(parser.add_option<SimpleOption<float>>("scale", 1.0f)),
offset(parser.add_option<SimpleOption<int>>("offset", 0)),
weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high")),
input_npy(parser.add_option<SimpleOption<std::string>>("input_image")),
output_npy(parser.add_option<SimpleOption<std::string>>("reference_image")),
weights_npy(parser.add_option<SimpleOption<std::string>>("weights_npy")),
bias_npy(parser.add_option<SimpleOption<std::string>>("bias_image"))
{
const std::set<ConvolutionPaddingMode> available_padding_modes
{
ConvolutionPaddingMode::Valid,
ConvolutionPaddingMode::Same
};
const std::set<arm_compute::graph::ConvolutionMethod> supported_convolution_methods
{
arm_compute::graph::ConvolutionMethod::Default,
arm_compute::graph::ConvolutionMethod::GEMM,
arm_compute::graph::ConvolutionMethod::Winograd,
arm_compute::graph::ConvolutionMethod::Direct
};
const std::set<DataLayout> supported_data_layouts
{
DataLayout::NHWC,
DataLayout::NCHW,
};
padding_mode = parser.add_option<EnumOption<ConvolutionPaddingMode>>("padding_mode", available_padding_modes, ConvolutionPaddingMode::Valid);
conv_mode = parser.add_option<EnumOption<arm_compute::graph::ConvolutionMethod>>("convolution_method", supported_convolution_methods, arm_compute::graph::ConvolutionMethod::Default);
data_layout = parser.add_option<EnumOption<DataLayout>>("layout", supported_data_layouts, DataLayout::NHWC);
padding_mode->set_help("Set padding mode");
help->set_help("Show this help message");
width->set_help("Set Input dimension width");
height->set_help("Set Input dimension height");
channels->set_help("Set Input dimension channels");
batch->set_help("Set Input dimension batch");
weights_width->set_help("Set weights_dimensions width");
weights_height->set_help("Set weights_dimensions height");
OFM->set_help("Set OFM");
padding_top->set_help("Set padding top");
padding_bottom->set_help("Set padding bottom");
padding_left->set_help("Set padding left");
padding_right->set_help("Set padding right");
stride_x->set_help("Set padding stride x");
stride_y->set_help("Set padding stride y");
conv_mode->set_help("Set convolution method");
scale->set_help("Quantization scale from QASYMM8");
offset->set_help("Quantization offset from QASYMM8");
weights_scale->set_help("Quantization scale from QASYMM8");
weights_offset->set_help("Quantization offset from QASYMM8");
output_scale->set_help("Quantization scale from QASYMM8");
output_offset->set_help("Quantization offset from QASYMM8");
input_npy->set_help("Use input .npy instead");
output_npy->set_help("Use .npy as a reference");
input_range_low->set_help("Lower bound for input randomization range");
input_range_high->set_help("Lower bound for input randomization range");
weights_range_low->set_help("Lower bound for input randomization range");
weights_range_high->set_help("Lower bound for input randomization range");
}
/** Fill out the supplied parameters with user supplied parameters
*
* @param[out] os Output stream.
* @param[in] common_params Example parameters to output
*
* @return None.
*/
void consume_parameters(ExampleParams &common_params)
{
common_params.input.width = width->value();
common_params.input.height = height->value();
common_params.input.fm = channels->value();
common_params.input.batch = batch->value();
common_params.input.quant_info = QuantizationInfo(scale->value(), offset->value());
common_params.input.npy = input_npy->value();
common_params.input.range_low = input_range_low->value();
common_params.input.range_high = input_range_high->value();
common_params.weights.width = weights_width->value();
common_params.weights.height = weights_height->value();
common_params.weights.fm = OFM->value();
common_params.weights.npy = weights_npy->value();
common_params.weights.quant_info = QuantizationInfo(weights_scale->value(), weights_offset->value());
common_params.weights.range_low = weights_range_low->value();
common_params.weights.range_high = weights_range_high->value();
common_params.bias.npy = bias_npy->value();
common_params.output.quant_info = QuantizationInfo(output_scale->value(), output_offset->value());
common_params.output.npy = output_npy->value();
common_params.convolution.padding_mode = padding_mode->value();
common_params.convolution.padding_top = padding_top->value();
common_params.convolution.padding_bottom = padding_bottom->value();
common_params.convolution.padding_left = padding_left->value();
common_params.convolution.padding_right = padding_right->value();
common_params.convolution.padding_stride_x = stride_x->value();
common_params.convolution.padding_stride_y = stride_y->value();
common_params.data_type = data_type->value();
common_params.data_layout = data_layout->value();
common_params.convolution_method = conv_mode->value();
}
void print_parameters(::std::ostream &os, const ExampleParams &common_params) override
{
os << "Threads : " << common_params.common_params.threads << std::endl;
os << "Target : " << common_params.common_params.target << std::endl;
os << "Data type : " << common_params.data_type << std::endl;
os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
<< std::endl;
os << "Weight dimensions(X,Y, Channels(same as input), OFM) : (" << common_params.weights.width << "," << common_params.weights.height << "," << common_params.input.fm << "," <<
common_params.weights.fm << ")" << std::endl;
os << "Padding(top, bottom, left, right) (stride x, stride y) : (" << common_params.convolution.padding_top << "," << common_params.convolution.padding_bottom << "," <<
common_params.convolution.padding_left << "," << common_params.convolution.padding_right << ") (" << common_params.convolution.padding_stride_x << "," << common_params.convolution.padding_stride_y <<
")" << std::endl;
os << "Padding Mode: " << common_params.convolution.padding_mode << std::endl;
os << "Convolution Method: " << common_params.convolution_method << std::endl;
}
/** Prevent instances of this class from being copied (As this class contains pointers) */
ConvolutionOptions(const ConvolutionOptions &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
ConvolutionOptions &operator=(const ConvolutionOptions &) = delete;
/** Allow instances of this class to be moved */
ConvolutionOptions(ConvolutionOptions &&) noexcept(true) = default;
/** Allow instances of this class to be moved */
ConvolutionOptions &operator=(ConvolutionOptions &&) noexcept(true) = default;
/** Default destructor */
~ConvolutionOptions() override = default;
private:
SimpleOption<int> *width; /**< Input width */
SimpleOption<int> *height; /**< Input height */
SimpleOption<int> *channels; /**< Input channels */
SimpleOption<int> *batch; /**< Input batch */
SimpleOption<int> *weights_width; /**< weights width */
SimpleOption<int> *weights_height; /**< weights height */
SimpleOption<int> *OFM; /**< Output Feature Map */
SimpleOption<int> *padding_top; /**< Padding top */
SimpleOption<int> *padding_left; /**< Padding left */
SimpleOption<int> *padding_bottom; /**< Padding bottom */
SimpleOption<int> *padding_right; /**< Padding right */
SimpleOption<int> *stride_x; /**< Padding stride x */
SimpleOption<int> *stride_y; /**< Padding stride y */
EnumOption<ConvolutionPaddingMode> *padding_mode; /**< Padding mode */
EnumOption<arm_compute::graph::ConvolutionMethod> *conv_mode; /**< Convolution method */
EnumOption<arm_compute::DataLayout> *data_layout; /**< Graph data layout */
SimpleOption<float> *scale; /**< Input Quantization scale from QASYMM8 */
SimpleOption<int> *offset; /**< Input Quantization offset from QASYMM8 */
SimpleOption<float> *weights_scale; /**< Weights Quantization scale from QASYMM8 */
SimpleOption<int> *weights_offset; /**< Weights Quantization offset from QASYMM8 */
SimpleOption<float> *output_scale; /**< Output Quantization scale from QASYMM8 */
SimpleOption<int> *output_offset; /**< Output Quantization offset from QASYMM8 */
SimpleOption<uint64_t> *input_range_low; /**< Lower bound for input randomization range */
SimpleOption<uint64_t> *input_range_high; /**< Upper bound for input randomization range */
SimpleOption<uint64_t> *weights_range_low; /**< Lower bound for weights randomization range */
SimpleOption<uint64_t> *weights_range_high; /**< Upper bound for weights randomization range */
SimpleOption<std::string> *input_npy; /**< Use input .npy image */
SimpleOption<std::string> *output_npy; /**< Use output .npy image to verify*/
SimpleOption<std::string> *weights_npy; /**< Use weights .npy image */
SimpleOption<std::string> *bias_npy; /**< Use bias .npy image */
};
/** ConvolutionLayer Graph example validation accessor class */
template <typename D>
class ConvolutionVerifyAccessor final : public VerifyAccessor<D>
{
using BaseClassType = VerifyAccessor<D>;
using BaseClassType::BaseClassType;
using BaseClassType::_params;
using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
SimpleTensor<D> reference(SimpleTensor<D> &src, SimpleTensor<D> &weights, SimpleTensor<TBias> &bias, const TensorShape &output_shape) override
{
// Calculate padding information
const PadStrideInfo padding_info = calculate_convolution_padding(_params);
//Calculate reference
return reference::convolution_layer<D>(src, weights, bias, output_shape, padding_info, Size2D(1, 1),
1, _params.output.quant_info);
}
float relative_tolerance() override
{
const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
{
{
arm_compute::graph::Target::CL,
{ { DataType::F16, 0.2f },
{ DataType::F32, 0.5f },
{ DataType::QASYMM8, 1.0f }
}
},
{
arm_compute::graph::Target::NEON,
{ { DataType::F16, 0.2f },
{ DataType::F32, 0.01f },
{ DataType::QASYMM8, 0.0f }
}
}
};
if(_params.convolution_method == arm_compute::graph::ConvolutionMethod::Winograd
&& _params.data_type == DataType::F32
&& _params.common_params.target == arm_compute::graph::Target::NEON)
{
return 0.05f;
}
else
{
return relative_tolerance.at(_params.common_params.target).at(_params.data_type);
}
}
float absolute_tolerance() override
{
const std::map<Target, const std::map<DataType, float>> absolute_tolerance
{
{
Target::CL,
{ { DataType::F16, 0.0f },
{ DataType::F32, 0.0001f },
{ DataType::QASYMM8, 0.0f }
}
},
{
Target::NEON,
{ { DataType::F16, 0.2f },
{ DataType::F32, 0.002f },
{ DataType::QASYMM8, 0.0f }
}
}
};
return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
}
float tolerance_number() override
{
const std::map<Target, const std::map<DataType, float>> absolute_tolerance
{
{
Target::CL,
{ { DataType::F16, 0.07f },
{ DataType::F32, 0.07f },
{ DataType::QASYMM8, 0.0f }
}
},
{
Target::NEON,
{ { DataType::F16, 0.07f },
{ DataType::F32, 0.0f },
{ DataType::QASYMM8, 0.0f }
}
}
};
return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
}
};
} // namespace
class GraphConvolutionValidateExample final : public GraphValidateExample<ConvolutionLayer, ConvolutionOptions, ConvolutionVerifyAccessor>
{
using GraphValidateExample::graph;
public:
GraphConvolutionValidateExample()
: GraphValidateExample("Convolution Graph example")
{
}
ConvolutionLayer GraphFunctionLayer(ExampleParams ¶ms) override
{
const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
const PixelValue weights_lower = PixelValue(params.weights.range_low, params.data_type, params.weights.quant_info);
const PixelValue weights_upper = PixelValue(params.weights.range_high, params.data_type, params.weights.quant_info);
// Calculate padding information
const PadStrideInfo padding_info = calculate_convolution_padding(params);
return ConvolutionLayer(params.weights.width, params.weights.height, params.weights.fm,
get_accessor(params.weights, weights_lower, weights_upper, 1),
get_accessor(params.bias, lower, upper, 2),
padding_info, 1, params.weights.quant_info, params.output.quant_info);
}
};
/** Main program for Graph Convolution test
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments ( Input dimensions [width, height, channels, batch]
* Weights dimensions [width, height, OFM]
* Padding [top,bottom,left,right, Stride x, Stride y, mode [Valid / Same / Manual] )
* Convolution Method[ Auto/GEMM/Winograd/Direct]
* Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
*
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<GraphConvolutionValidateExample>(argc, argv);
}
|