1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
|
/*
* Copyright (c) 2017-2021, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "utils/GraphUtils.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/graph/Logger.h"
#include "arm_compute/runtime/SubTensor.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include "utils/ImageLoader.h"
#pragma GCC diagnostic pop
#include "utils/Utils.h"
#include <inttypes.h>
#include <iomanip>
#include <limits>
using namespace arm_compute::graph_utils;
namespace
{
std::pair<arm_compute::TensorShape, arm_compute::PermutationVector>
compute_permutation_parameters(const arm_compute::TensorShape &shape, arm_compute::DataLayout data_layout)
{
// Set permutation parameters if needed
arm_compute::TensorShape permuted_shape = shape;
arm_compute::PermutationVector perm;
// Permute only if num_dimensions greater than 2
if (shape.num_dimensions() > 2)
{
perm = (data_layout == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U)
: arm_compute::PermutationVector(1U, 2U, 0U);
arm_compute::PermutationVector perm_shape = (data_layout == arm_compute::DataLayout::NCHW)
? arm_compute::PermutationVector(2U, 0U, 1U)
: arm_compute::PermutationVector(1U, 2U, 0U);
arm_compute::permute(permuted_shape, perm_shape);
}
return std::make_pair(permuted_shape, perm);
}
} // namespace
TFPreproccessor::TFPreproccessor(float min_range, float max_range) : _min_range(min_range), _max_range(max_range)
{
}
void TFPreproccessor::preprocess(ITensor &tensor)
{
if (tensor.info()->data_type() == DataType::F32)
{
preprocess_typed<float>(tensor);
}
else if (tensor.info()->data_type() == DataType::F16)
{
preprocess_typed<half>(tensor);
}
else
{
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
template <typename T>
void TFPreproccessor::preprocess_typed(ITensor &tensor)
{
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
const float range = _max_range - _min_range;
execute_window_loop(window,
[&](const Coordinates &id)
{
const T value = *reinterpret_cast<T *>(tensor.ptr_to_element(id));
float res = value / 255.f; // Normalize to [0, 1]
res = res * range + _min_range; // Map to [min_range, max_range]
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = res;
});
}
CaffePreproccessor::CaffePreproccessor(std::array<float, 3> mean, bool bgr, float scale)
: _mean(mean), _bgr(bgr), _scale(scale)
{
if (_bgr)
{
std::swap(_mean[0], _mean[2]);
}
}
void CaffePreproccessor::preprocess(ITensor &tensor)
{
if (tensor.info()->data_type() == DataType::F32)
{
preprocess_typed<float>(tensor);
}
else if (tensor.info()->data_type() == DataType::F16)
{
preprocess_typed<half>(tensor);
}
else
{
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
template <typename T>
void CaffePreproccessor::preprocess_typed(ITensor &tensor)
{
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
const int channel_idx = get_data_layout_dimension_index(tensor.info()->data_layout(), DataLayoutDimension::CHANNEL);
execute_window_loop(window,
[&](const Coordinates &id)
{
const T value =
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) - T(_mean[id[channel_idx]]);
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value * T(_scale);
});
}
PPMWriter::PPMWriter(std::string name, unsigned int maximum) : _name(std::move(name)), _iterator(0), _maximum(maximum)
{
}
bool PPMWriter::access_tensor(ITensor &tensor)
{
std::stringstream ss;
ss << _name << _iterator << ".ppm";
arm_compute::utils::save_to_ppm(tensor, ss.str());
_iterator++;
if (_maximum == 0)
{
return true;
}
return _iterator < _maximum;
}
DummyAccessor::DummyAccessor(unsigned int maximum) : _iterator(0), _maximum(maximum)
{
}
bool DummyAccessor::access_tensor_data()
{
return false;
}
bool DummyAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_UNUSED(tensor);
bool ret = _maximum == 0 || _iterator < _maximum;
if (_iterator == _maximum)
{
_iterator = 0;
}
else
{
_iterator++;
}
return ret;
}
NumPyAccessor::NumPyAccessor(
std::string npy_path, TensorShape shape, DataType data_type, DataLayout data_layout, std::ostream &output_stream)
: _npy_tensor(), _filename(std::move(npy_path)), _output_stream(output_stream)
{
NumPyBinLoader loader(_filename, data_layout);
TensorInfo info(shape, 1, data_type);
info.set_data_layout(data_layout);
_npy_tensor.allocator()->init(info);
_npy_tensor.allocator()->allocate();
loader.access_tensor(_npy_tensor);
}
template <typename T>
void NumPyAccessor::access_numpy_tensor(ITensor &tensor, T tolerance)
{
const int num_elements = tensor.info()->tensor_shape().total_size();
int num_mismatches = utils::compare_tensor<T>(tensor, _npy_tensor, tolerance);
float percentage_mismatches = static_cast<float>(num_mismatches) / num_elements;
_output_stream << "Results: " << 100.f - (percentage_mismatches * 100) << " % matches with the provided output["
<< _filename << "]." << std::endl;
_output_stream << " " << num_elements - num_mismatches << " out of " << num_elements
<< " matches with the provided output[" << _filename << "]." << std::endl
<< std::endl;
}
bool NumPyAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
ARM_COMPUTE_ERROR_ON(_npy_tensor.info()->dimension(0) != tensor.info()->dimension(0));
switch (tensor.info()->data_type())
{
case DataType::QASYMM8:
access_numpy_tensor<qasymm8_t>(tensor, 0);
break;
case DataType::F32:
access_numpy_tensor<float>(tensor, 0.0001f);
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return false;
}
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
PrintAccessor::PrintAccessor(std::ostream &output_stream, IOFormatInfo io_fmt)
: _output_stream(output_stream), _io_fmt(io_fmt)
{
}
bool PrintAccessor::access_tensor(ITensor &tensor)
{
tensor.print(_output_stream, _io_fmt);
return false;
}
#endif /* ARM_COMPUTE_ASSERTS_ENABLED */
SaveNumPyAccessor::SaveNumPyAccessor(std::string npy_name, const bool is_fortran)
: _npy_name(std::move(npy_name)), _is_fortran(is_fortran)
{
}
bool SaveNumPyAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
utils::save_to_npy(tensor, _npy_name, _is_fortran);
return false;
}
ImageAccessor::ImageAccessor(std::string filename, bool bgr, std::unique_ptr<IPreprocessor> preprocessor)
: _already_loaded(false), _filename(std::move(filename)), _bgr(bgr), _preprocessor(std::move(preprocessor))
{
}
bool ImageAccessor::access_tensor(ITensor &tensor)
{
if (!_already_loaded)
{
auto image_loader = utils::ImageLoaderFactory::create(_filename);
ARM_COMPUTE_EXIT_ON_MSG(image_loader == nullptr, "Unsupported image type");
// Open image file
image_loader->open(_filename);
// Get permutated shape and permutation parameters
TensorShape permuted_shape = tensor.info()->tensor_shape();
arm_compute::PermutationVector perm;
if (tensor.info()->data_layout() != DataLayout::NCHW)
{
std::tie(permuted_shape, perm) =
compute_permutation_parameters(tensor.info()->tensor_shape(), tensor.info()->data_layout());
}
#ifdef __arm__
ARM_COMPUTE_EXIT_ON_MSG_VAR(
image_loader->width() != permuted_shape.x() || image_loader->height() != permuted_shape.y(),
"Failed to load image file: dimensions [%d,%d] not correct, expected [%" PRIu32 ",%" PRIu32 "].",
image_loader->width(), image_loader->height(), permuted_shape.x(), permuted_shape.y());
#else // __arm__
ARM_COMPUTE_EXIT_ON_MSG_VAR(
image_loader->width() != permuted_shape.x() || image_loader->height() != permuted_shape.y(),
"Failed to load image file: dimensions [%d,%d] not correct, expected [%" PRIu64 ",%" PRIu64 "].",
image_loader->width(), image_loader->height(), static_cast<uint64_t>(permuted_shape.x()),
static_cast<uint64_t>(permuted_shape.y()));
#endif // __arm__
// Fill the tensor with the PPM content (BGR)
image_loader->fill_planar_tensor(tensor, _bgr);
// Preprocess tensor
if (_preprocessor)
{
_preprocessor->preprocess(tensor);
}
}
_already_loaded = !_already_loaded;
return _already_loaded;
}
ValidationInputAccessor::ValidationInputAccessor(const std::string &image_list,
std::string images_path,
std::unique_ptr<IPreprocessor> preprocessor,
bool bgr,
unsigned int start,
unsigned int end,
std::ostream &output_stream)
: _path(std::move(images_path)),
_images(),
_preprocessor(std::move(preprocessor)),
_bgr(bgr),
_offset(0),
_output_stream(output_stream)
{
ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!");
std::ifstream ifs;
try
{
ifs.exceptions(std::ifstream::badbit);
ifs.open(image_list, std::ios::in | std::ios::binary);
// Parse image names
unsigned int counter = 0;
for (std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter)
{
// Add image to process if withing range
if (counter >= start)
{
std::stringstream linestream(line);
std::string image_name;
linestream >> image_name;
_images.emplace_back(std::move(image_name));
}
}
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what());
}
}
bool ValidationInputAccessor::access_tensor(arm_compute::ITensor &tensor)
{
bool ret = _offset < _images.size();
if (ret)
{
utils::JPEGLoader jpeg;
// Open JPEG file
std::string image_name = _path + _images[_offset++];
jpeg.open(image_name);
_output_stream << "[" << _offset << "/" << _images.size() << "] Validating " << image_name << std::endl;
// Get permutated shape and permutation parameters
TensorShape permuted_shape = tensor.info()->tensor_shape();
arm_compute::PermutationVector perm;
if (tensor.info()->data_layout() != DataLayout::NCHW)
{
std::tie(permuted_shape, perm) =
compute_permutation_parameters(tensor.info()->tensor_shape(), tensor.info()->data_layout());
}
#ifdef __arm__
ARM_COMPUTE_EXIT_ON_MSG_VAR(jpeg.width() != permuted_shape.x() || jpeg.height() != permuted_shape.y(),
"Failed to load image file: dimensions [%d,%d] not correct, expected [%" PRIu32
",%" PRIu32 "].",
jpeg.width(), jpeg.height(), permuted_shape.x(), permuted_shape.y());
#else // __arm__
ARM_COMPUTE_EXIT_ON_MSG_VAR(jpeg.width() != permuted_shape.x() || jpeg.height() != permuted_shape.y(),
"Failed to load image file: dimensions [%d,%d] not correct, expected [%" PRIu64
",%" PRIu64 "].",
jpeg.width(), jpeg.height(), static_cast<uint64_t>(permuted_shape.x()),
static_cast<uint64_t>(permuted_shape.y()));
#endif // __arm__
// Fill the tensor with the JPEG content (BGR)
jpeg.fill_planar_tensor(tensor, _bgr);
// Preprocess tensor
if (_preprocessor)
{
_preprocessor->preprocess(tensor);
}
}
return ret;
}
ValidationOutputAccessor::ValidationOutputAccessor(const std::string &image_list,
std::ostream &output_stream,
unsigned int start,
unsigned int end)
: _results(), _output_stream(output_stream), _offset(0), _positive_samples_top1(0), _positive_samples_top5(0)
{
ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!");
std::ifstream ifs;
try
{
ifs.exceptions(std::ifstream::badbit);
ifs.open(image_list, std::ios::in | std::ios::binary);
// Parse image correctly classified labels
unsigned int counter = 0;
for (std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter)
{
// Add label if within range
if (counter >= start)
{
std::stringstream linestream(line);
std::string image_name;
int result;
linestream >> image_name >> result;
_results.emplace_back(result);
}
}
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what());
}
}
void ValidationOutputAccessor::reset()
{
_offset = 0;
_positive_samples_top1 = 0;
_positive_samples_top5 = 0;
}
bool ValidationOutputAccessor::access_tensor(arm_compute::ITensor &tensor)
{
bool ret = _offset < _results.size();
if (ret)
{
// Get results
std::vector<size_t> tensor_results;
switch (tensor.info()->data_type())
{
case DataType::QASYMM8:
tensor_results = access_predictions_tensor<uint8_t>(tensor);
break;
case DataType::F16:
tensor_results = access_predictions_tensor<half>(tensor);
break;
case DataType::F32:
tensor_results = access_predictions_tensor<float>(tensor);
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
// Check if tensor results are within top-n accuracy
size_t correct_label = _results[_offset++];
aggregate_sample(tensor_results, _positive_samples_top1, 1, correct_label);
aggregate_sample(tensor_results, _positive_samples_top5, 5, correct_label);
}
// Report top_n accuracy
if (_offset >= _results.size())
{
report_top_n(1, _results.size(), _positive_samples_top1);
report_top_n(5, _results.size(), _positive_samples_top5);
}
return ret;
}
template <typename T>
std::vector<size_t> ValidationOutputAccessor::access_predictions_tensor(arm_compute::ITensor &tensor)
{
// Get the predicted class
std::vector<size_t> index;
const auto output_net = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
const size_t num_classes = tensor.info()->dimension(0);
index.resize(num_classes);
// Sort results
std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
std::sort(std::begin(index), std::end(index), [&](size_t a, size_t b) { return output_net[a] > output_net[b]; });
return index;
}
void ValidationOutputAccessor::aggregate_sample(const std::vector<size_t> &res,
size_t &positive_samples,
size_t top_n,
size_t correct_label)
{
auto is_valid_label = [correct_label](size_t label) { return label == correct_label; };
if (std::any_of(std::begin(res), std::begin(res) + top_n, is_valid_label))
{
++positive_samples;
}
}
void ValidationOutputAccessor::report_top_n(size_t top_n, size_t total_samples, size_t positive_samples)
{
size_t negative_samples = total_samples - positive_samples;
float accuracy = positive_samples / static_cast<float>(total_samples);
_output_stream << "----------Top " << top_n << " accuracy ----------" << std::endl << std::endl;
_output_stream << "Positive samples : " << positive_samples << std::endl;
_output_stream << "Negative samples : " << negative_samples << std::endl;
_output_stream << "Accuracy : " << accuracy << std::endl;
}
DetectionOutputAccessor::DetectionOutputAccessor(const std::string &labels_path,
std::vector<TensorShape> &imgs_tensor_shapes,
std::ostream &output_stream)
: _labels(), _tensor_shapes(std::move(imgs_tensor_shapes)), _output_stream(output_stream)
{
_labels.clear();
std::ifstream ifs;
try
{
ifs.exceptions(std::ifstream::badbit);
ifs.open(labels_path, std::ios::in | std::ios::binary);
for (std::string line; !std::getline(ifs, line).fail();)
{
_labels.emplace_back(line);
}
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what());
}
}
template <typename T>
void DetectionOutputAccessor::access_predictions_tensor(ITensor &tensor)
{
const size_t num_detection = tensor.info()->valid_region().shape.y();
const auto output_prt = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
if (num_detection > 0)
{
_output_stream << "---------------------- Detections ----------------------" << std::endl << std::endl;
_output_stream << std::left << std::setprecision(4) << std::setw(8) << "Image | " << std::setw(8) << "Label | "
<< std::setw(12) << "Confidence | "
<< "[ xmin, ymin, xmax, ymax ]" << std::endl;
for (size_t i = 0; i < num_detection; ++i)
{
auto im = static_cast<const int>(output_prt[i * 7]);
_output_stream << std::setw(8) << im << std::setw(8) << _labels[output_prt[i * 7 + 1]] << std::setw(12)
<< output_prt[i * 7 + 2] << " [" << (output_prt[i * 7 + 3] * _tensor_shapes[im].x()) << ", "
<< (output_prt[i * 7 + 4] * _tensor_shapes[im].y()) << ", "
<< (output_prt[i * 7 + 5] * _tensor_shapes[im].x()) << ", "
<< (output_prt[i * 7 + 6] * _tensor_shapes[im].y()) << "]" << std::endl;
}
}
else
{
_output_stream << "No detection found." << std::endl;
}
}
bool DetectionOutputAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
switch (tensor.info()->data_type())
{
case DataType::F32:
access_predictions_tensor<float>(tensor);
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return false;
}
TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path,
size_t top_n,
std::ostream &output_stream)
: _labels(), _output_stream(output_stream), _top_n(top_n)
{
_labels.clear();
std::ifstream ifs;
try
{
ifs.exceptions(std::ifstream::badbit);
ifs.open(labels_path, std::ios::in | std::ios::binary);
for (std::string line; !std::getline(ifs, line).fail();)
{
_labels.emplace_back(line);
}
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what());
}
}
template <typename T>
void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor)
{
// Get the predicted class
std::vector<T> classes_prob;
std::vector<size_t> index;
const auto output_net = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
const size_t num_classes = tensor.info()->dimension(0);
classes_prob.resize(num_classes);
index.resize(num_classes);
std::copy(output_net, output_net + num_classes, classes_prob.begin());
// Sort results
std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
std::sort(std::begin(index), std::end(index),
[&](size_t a, size_t b) { return classes_prob[a] > classes_prob[b]; });
_output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl << std::endl;
for (size_t i = 0; i < _top_n; ++i)
{
_output_stream << std::fixed << std::setprecision(4) << +classes_prob[index.at(i)] << " - [id = " << index.at(i)
<< "]"
<< ", " << _labels[index.at(i)] << std::endl;
}
}
bool TopNPredictionsAccessor::access_tensor(ITensor &tensor)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0));
switch (tensor.info()->data_type())
{
case DataType::QASYMM8:
access_predictions_tensor<uint8_t>(tensor);
break;
case DataType::F32:
access_predictions_tensor<float>(tensor);
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return false;
}
RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed)
: _lower(lower), _upper(upper), _seed(seed)
{
}
template <typename T, typename D>
void RandomAccessor::fill(ITensor &tensor, D &&distribution)
{
std::mt19937 gen(_seed);
if (tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
{
for (size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size())
{
const auto value = static_cast<T>(distribution(gen));
*reinterpret_cast<T *>(tensor.buffer() + offset) = value;
}
}
else
{
// If tensor has padding accessing tensor elements through execution window.
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
execute_window_loop(window,
[&](const Coordinates &id)
{
const auto value = static_cast<T>(distribution(gen));
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value;
});
}
}
bool RandomAccessor::access_tensor(ITensor &tensor)
{
switch (tensor.info()->data_type())
{
case DataType::QASYMM8:
case DataType::U8:
{
std::uniform_int_distribution<uint32_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>());
fill<uint8_t>(tensor, distribution_u8);
break;
}
case DataType::S8:
{
std::uniform_int_distribution<int32_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>());
fill<int8_t>(tensor, distribution_s8);
break;
}
case DataType::U16:
{
std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>());
fill<uint16_t>(tensor, distribution_u16);
break;
}
case DataType::S16:
{
std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>());
fill<int16_t>(tensor, distribution_s16);
break;
}
case DataType::U32:
{
std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>());
fill<uint32_t>(tensor, distribution_u32);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>());
fill<int32_t>(tensor, distribution_s32);
break;
}
case DataType::U64:
{
std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>());
fill<uint64_t>(tensor, distribution_u64);
break;
}
case DataType::S64:
{
std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>());
fill<int64_t>(tensor, distribution_s64);
break;
}
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution_f16(_lower.get<float>(),
_upper.get<float>());
fill<half>(tensor, distribution_f16);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>());
fill<float>(tensor, distribution_f32);
break;
}
case DataType::F64:
{
std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>());
fill<double>(tensor, distribution_f64);
break;
}
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
return true;
}
NumPyBinLoader::NumPyBinLoader(std::string filename, DataLayout file_layout)
: _already_loaded(false), _filename(std::move(filename)), _file_layout(file_layout)
{
}
bool NumPyBinLoader::access_tensor(ITensor &tensor)
{
if (!_already_loaded)
{
utils::NPYLoader loader;
loader.open(_filename, _file_layout);
loader.fill_tensor(tensor);
}
_already_loaded = !_already_loaded;
return _already_loaded;
}
|