1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_UTILS_GRAPH_UTILS_H__
#define __ARM_COMPUTE_UTILS_GRAPH_UTILS_H__
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/Utility.h"
#include "arm_compute/graph/Graph.h"
#include "arm_compute/graph/ITensorAccessor.h"
#include "arm_compute/graph/Types.h"
#include "arm_compute/runtime/Tensor.h"
#include "utils/CommonGraphOptions.h"
#include <array>
#include <random>
#include <string>
#include <vector>
namespace arm_compute
{
namespace graph_utils
{
/** Preprocessor interface **/
class IPreprocessor
{
public:
/** Default destructor. */
virtual ~IPreprocessor() = default;
/** Preprocess the given tensor.
*
* @param[in] tensor Tensor to preprocess.
*/
virtual void preprocess(ITensor &tensor) = 0;
};
/** Caffe preproccessor */
class CaffePreproccessor : public IPreprocessor
{
public:
/** Default Constructor
*
* @param[in] mean Mean array in RGB ordering
* @param[in] bgr Boolean specifying if the preprocessing should assume BGR format
* @param[in] scale Scale value
*/
CaffePreproccessor(std::array<float, 3> mean = std::array<float, 3>{{0, 0, 0}}, bool bgr = true, float scale = 1.f);
void preprocess(ITensor &tensor) override;
private:
template <typename T>
void preprocess_typed(ITensor &tensor);
std::array<float, 3> _mean;
bool _bgr;
float _scale;
};
/** TF preproccessor */
class TFPreproccessor : public IPreprocessor
{
public:
/** Constructor
*
* @param[in] min_range Min normalization range. (Defaults to -1.f)
* @param[in] max_range Max normalization range. (Defaults to 1.f)
*/
TFPreproccessor(float min_range = -1.f, float max_range = 1.f);
// Inherited overriden methods
void preprocess(ITensor &tensor) override;
private:
template <typename T>
void preprocess_typed(ITensor &tensor);
float _min_range;
float _max_range;
};
/** PPM writer class */
class PPMWriter : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] name PPM file name
* @param[in] maximum Maximum elements to access
*/
PPMWriter(std::string name, unsigned int maximum = 1);
/** Allows instances to move constructed */
PPMWriter(PPMWriter &&) = default;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
const std::string _name;
unsigned int _iterator;
unsigned int _maximum;
};
/** Dummy accessor class */
class DummyAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] maximum Maximum elements to write
*/
DummyAccessor(unsigned int maximum = 1);
/** Allows instances to move constructed */
DummyAccessor(DummyAccessor &&) = default;
// Inherited methods overriden:
bool access_tensor_data() override;
bool access_tensor(ITensor &tensor) override;
private:
unsigned int _iterator;
unsigned int _maximum;
};
/** NumPy accessor class */
class NumPyAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] npy_path Path to npy file.
* @param[in] shape Shape of the numpy tensor data.
* @param[in] data_type DataType of the numpy tensor data.
* @param[in] data_layout (Optional) DataLayout of the numpy tensor data.
* @param[out] output_stream (Optional) Output stream
*/
NumPyAccessor(std::string npy_path,
TensorShape shape,
DataType data_type,
DataLayout data_layout = DataLayout::NCHW,
std::ostream &output_stream = std::cout);
/** Allow instances of this class to be move constructed */
NumPyAccessor(NumPyAccessor &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
NumPyAccessor(const NumPyAccessor &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
NumPyAccessor &operator=(const NumPyAccessor &) = delete;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
template <typename T>
void access_numpy_tensor(ITensor &tensor, T tolerance);
Tensor _npy_tensor;
const std::string _filename;
std::ostream &_output_stream;
};
/** SaveNumPy accessor class */
class SaveNumPyAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] npy_name Npy file name.
* @param[in] is_fortran (Optional) If true, save tensor in fortran order.
*/
SaveNumPyAccessor(const std::string npy_name, const bool is_fortran = false);
/** Allow instances of this class to be move constructed */
SaveNumPyAccessor(SaveNumPyAccessor &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
SaveNumPyAccessor(const SaveNumPyAccessor &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
SaveNumPyAccessor &operator=(const SaveNumPyAccessor &) = delete;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
const std::string _npy_name;
const bool _is_fortran;
};
/** Print accessor class
* @note The print accessor will print only when asserts are enabled.
* */
class PrintAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[out] output_stream (Optional) Output stream
* @param[in] io_fmt (Optional) Format information
*/
PrintAccessor(std::ostream &output_stream = std::cout, IOFormatInfo io_fmt = IOFormatInfo());
/** Allow instances of this class to be move constructed */
PrintAccessor(PrintAccessor &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
PrintAccessor(const PrintAccessor &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
PrintAccessor &operator=(const PrintAccessor &) = delete;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
std::ostream &_output_stream;
IOFormatInfo _io_fmt;
};
/** Image accessor class */
class ImageAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] filename Image file
* @param[in] bgr (Optional) Fill the first plane with blue channel (default = false - RGB format)
* @param[in] preprocessor (Optional) Image pre-processing object
*/
ImageAccessor(std::string filename, bool bgr = true, std::unique_ptr<IPreprocessor> preprocessor = nullptr);
/** Allow instances of this class to be move constructed */
ImageAccessor(ImageAccessor &&) = default;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
bool _already_loaded;
const std::string _filename;
const bool _bgr;
std::unique_ptr<IPreprocessor> _preprocessor;
};
/** Input Accessor used for network validation */
class ValidationInputAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] image_list File containing all the images to validate
* @param[in] images_path Path to images.
* @param[in] bgr (Optional) Fill the first plane with blue channel (default = false - RGB format)
* @param[in] preprocessor (Optional) Image pre-processing object (default = nullptr)
* @param[in] start (Optional) Start range
* @param[in] end (Optional) End range
* @param[out] output_stream (Optional) Output stream
*
* @note Range is defined as [start, end]
*/
ValidationInputAccessor(const std::string &image_list,
std::string images_path,
std::unique_ptr<IPreprocessor> preprocessor = nullptr,
bool bgr = true,
unsigned int start = 0,
unsigned int end = 0,
std::ostream &output_stream = std::cout);
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
std::string _path;
std::vector<std::string> _images;
std::unique_ptr<IPreprocessor> _preprocessor;
bool _bgr;
size_t _offset;
std::ostream &_output_stream;
};
/** Output Accessor used for network validation */
class ValidationOutputAccessor final : public graph::ITensorAccessor
{
public:
/** Default Constructor
*
* @param[in] image_list File containing all the images and labels results
* @param[out] output_stream (Optional) Output stream (Defaults to the standard output stream)
* @param[in] start (Optional) Start range
* @param[in] end (Optional) End range
*
* @note Range is defined as [start, end]
*/
ValidationOutputAccessor(const std::string &image_list,
std::ostream &output_stream = std::cout,
unsigned int start = 0,
unsigned int end = 0);
/** Reset accessor state */
void reset();
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
/** Access predictions of the tensor
*
* @tparam T Tensor elements type
*
* @param[in] tensor Tensor to read the predictions from
*/
template <typename T>
std::vector<size_t> access_predictions_tensor(ITensor &tensor);
/** Aggregates the results of a sample
*
* @param[in] res Vector containing the results of a graph
* @param[in,out] positive_samples Positive samples to be updated
* @param[in] top_n Top n accuracy to measure
* @param[in] correct_label Correct label of the current sample
*/
void aggregate_sample(const std::vector<size_t> &res, size_t &positive_samples, size_t top_n, size_t correct_label);
/** Reports top N accuracy
*
* @param[in] top_n Top N accuracy that is being reported
* @param[in] total_samples Total number of samples
* @param[in] positive_samples Positive samples
*/
void report_top_n(size_t top_n, size_t total_samples, size_t positive_samples);
private:
std::vector<int> _results;
std::ostream &_output_stream;
size_t _offset;
size_t _positive_samples_top1;
size_t _positive_samples_top5;
};
/** Detection output accessor class */
class DetectionOutputAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] labels_path Path to labels text file.
* @param[in] imgs_tensor_shapes Network input images tensor shapes.
* @param[out] output_stream (Optional) Output stream
*/
DetectionOutputAccessor(const std::string &labels_path,
std::vector<TensorShape> &imgs_tensor_shapes,
std::ostream &output_stream = std::cout);
/** Allow instances of this class to be move constructed */
DetectionOutputAccessor(DetectionOutputAccessor &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
DetectionOutputAccessor(const DetectionOutputAccessor &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
DetectionOutputAccessor &operator=(const DetectionOutputAccessor &) = delete;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
template <typename T>
void access_predictions_tensor(ITensor &tensor);
std::vector<std::string> _labels;
std::vector<TensorShape> _tensor_shapes;
std::ostream &_output_stream;
};
/** Result accessor class */
class TopNPredictionsAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] labels_path Path to labels text file.
* @param[in] top_n (Optional) Number of output classes to print
* @param[out] output_stream (Optional) Output stream
*/
TopNPredictionsAccessor(const std::string &labels_path, size_t top_n = 5, std::ostream &output_stream = std::cout);
/** Allow instances of this class to be move constructed */
TopNPredictionsAccessor(TopNPredictionsAccessor &&) = default;
/** Prevent instances of this class from being copied (As this class contains pointers) */
TopNPredictionsAccessor(const TopNPredictionsAccessor &) = delete;
/** Prevent instances of this class from being copied (As this class contains pointers) */
TopNPredictionsAccessor &operator=(const TopNPredictionsAccessor &) = delete;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
template <typename T>
void access_predictions_tensor(ITensor &tensor);
std::vector<std::string> _labels;
std::ostream &_output_stream;
size_t _top_n;
};
/** Random accessor class */
class RandomAccessor final : public graph::ITensorAccessor
{
public:
/** Constructor
*
* @param[in] lower Lower bound value.
* @param[in] upper Upper bound value.
* @param[in] seed (Optional) Seed used to initialise the random number generator.
*/
RandomAccessor(PixelValue lower, PixelValue upper, const std::random_device::result_type seed = 0);
/** Allows instances to move constructed */
RandomAccessor(RandomAccessor &&) = default;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
template <typename T, typename D>
void fill(ITensor &tensor, D &&distribution);
PixelValue _lower;
PixelValue _upper;
std::random_device::result_type _seed;
};
/** Numpy Binary loader class*/
class NumPyBinLoader final : public graph::ITensorAccessor
{
public:
/** Default Constructor
*
* @param[in] filename Binary file name
* @param[in] file_layout (Optional) Layout of the numpy tensor data. Defaults to NCHW
*/
NumPyBinLoader(std::string filename, DataLayout file_layout = DataLayout::NCHW);
/** Allows instances to move constructed */
NumPyBinLoader(NumPyBinLoader &&) = default;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override;
private:
bool _already_loaded;
const std::string _filename;
const DataLayout _file_layout;
};
/** Generates appropriate random accessor
*
* @param[in] lower Lower random values bound
* @param[in] upper Upper random values bound
* @param[in] seed Random generator seed
*
* @return A ramdom accessor
*/
inline std::unique_ptr<graph::ITensorAccessor>
get_random_accessor(PixelValue lower, PixelValue upper, const std::random_device::result_type seed = 0)
{
return std::make_unique<RandomAccessor>(lower, upper, seed);
}
/** Generates appropriate weights accessor according to the specified path
*
* @note If path is empty will generate a DummyAccessor else will generate a NumPyBinLoader
*
* @param[in] path Path to the data files
* @param[in] data_file Relative path to the data files from path
* @param[in] file_layout (Optional) Layout of file. Defaults to NCHW
*
* @return An appropriate tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor>
get_weights_accessor(const std::string &path, const std::string &data_file, DataLayout file_layout = DataLayout::NCHW)
{
if (path.empty())
{
return std::make_unique<DummyAccessor>();
}
else
{
return std::make_unique<NumPyBinLoader>(path + data_file, file_layout);
}
}
/** Generates appropriate input accessor according to the specified graph parameters
*
* @param[in] graph_parameters Graph parameters
* @param[in] preprocessor (Optional) Preproccessor object
* @param[in] bgr (Optional) Fill the first plane with blue channel (default = true)
*
* @return An appropriate tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor>
get_input_accessor(const arm_compute::utils::CommonGraphParams &graph_parameters,
std::unique_ptr<IPreprocessor> preprocessor = nullptr,
bool bgr = true)
{
if (!graph_parameters.validation_file.empty())
{
return std::make_unique<ValidationInputAccessor>(
graph_parameters.validation_file, graph_parameters.validation_path, std::move(preprocessor), bgr,
graph_parameters.validation_range_start, graph_parameters.validation_range_end);
}
else
{
const std::string &image_file = graph_parameters.image;
const std::string &image_file_lower = lower_string(image_file);
if (arm_compute::utility::endswith(image_file_lower, ".npy"))
{
return std::make_unique<NumPyBinLoader>(image_file, graph_parameters.data_layout);
}
else if (arm_compute::utility::endswith(image_file_lower, ".jpeg") ||
arm_compute::utility::endswith(image_file_lower, ".jpg") ||
arm_compute::utility::endswith(image_file_lower, ".ppm"))
{
return std::make_unique<ImageAccessor>(image_file, bgr, std::move(preprocessor));
}
else
{
return std::make_unique<DummyAccessor>();
}
}
}
/** Generates appropriate output accessor according to the specified graph parameters
*
* @note If the output accessor is requested to validate the graph then ValidationOutputAccessor is generated
* else if output_accessor_file is empty will generate a DummyAccessor else will generate a TopNPredictionsAccessor
*
* @param[in] graph_parameters Graph parameters
* @param[in] top_n (Optional) Number of output classes to print (default = 5)
* @param[in] is_validation (Optional) Validation flag (default = false)
* @param[out] output_stream (Optional) Output stream (default = std::cout)
*
* @return An appropriate tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor>
get_output_accessor(const arm_compute::utils::CommonGraphParams &graph_parameters,
size_t top_n = 5,
bool is_validation = false,
std::ostream &output_stream = std::cout)
{
ARM_COMPUTE_UNUSED(is_validation);
if (!graph_parameters.validation_file.empty())
{
return std::make_unique<ValidationOutputAccessor>(graph_parameters.validation_file, output_stream,
graph_parameters.validation_range_start,
graph_parameters.validation_range_end);
}
else if (graph_parameters.labels.empty())
{
return std::make_unique<DummyAccessor>(0);
}
else
{
return std::make_unique<TopNPredictionsAccessor>(graph_parameters.labels, top_n, output_stream);
}
}
/** Generates appropriate output accessor according to the specified graph parameters
*
* @note If the output accessor is requested to validate the graph then ValidationOutputAccessor is generated
* else if output_accessor_file is empty will generate a DummyAccessor else will generate a TopNPredictionsAccessor
*
* @param[in] graph_parameters Graph parameters
* @param[in] tensor_shapes Network input images tensor shapes.
* @param[in] is_validation (Optional) Validation flag (default = false)
* @param[out] output_stream (Optional) Output stream (default = std::cout)
*
* @return An appropriate tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor>
get_detection_output_accessor(const arm_compute::utils::CommonGraphParams &graph_parameters,
std::vector<TensorShape> tensor_shapes,
bool is_validation = false,
std::ostream &output_stream = std::cout)
{
ARM_COMPUTE_UNUSED(is_validation);
if (!graph_parameters.validation_file.empty())
{
return std::make_unique<ValidationOutputAccessor>(graph_parameters.validation_file, output_stream,
graph_parameters.validation_range_start,
graph_parameters.validation_range_end);
}
else if (graph_parameters.labels.empty())
{
return std::make_unique<DummyAccessor>(0);
}
else
{
return std::make_unique<DetectionOutputAccessor>(graph_parameters.labels, tensor_shapes, output_stream);
}
}
/** Generates appropriate npy output accessor according to the specified npy_path
*
* @note If npy_path is empty will generate a DummyAccessor else will generate a NpyAccessor
*
* @param[in] npy_path Path to npy file.
* @param[in] shape Shape of the numpy tensor data.
* @param[in] data_type DataType of the numpy tensor data.
* @param[in] data_layout DataLayout of the numpy tensor data.
* @param[out] output_stream (Optional) Output stream
*
* @return An appropriate tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor> get_npy_output_accessor(const std::string &npy_path,
TensorShape shape,
DataType data_type,
DataLayout data_layout = DataLayout::NCHW,
std::ostream &output_stream = std::cout)
{
if (npy_path.empty())
{
return std::make_unique<DummyAccessor>(0);
}
else
{
return std::make_unique<NumPyAccessor>(npy_path, shape, data_type, data_layout, output_stream);
}
}
/** Generates appropriate npy output accessor according to the specified npy_path
*
* @note If npy_path is empty will generate a DummyAccessor else will generate a SaveNpyAccessor
*
* @param[in] npy_name Npy filename.
* @param[in] is_fortran (Optional) If true, save tensor in fortran order.
*
* @return An appropriate tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor> get_save_npy_output_accessor(const std::string &npy_name,
const bool is_fortran = false)
{
if (npy_name.empty())
{
return std::make_unique<DummyAccessor>(0);
}
else
{
return std::make_unique<SaveNumPyAccessor>(npy_name, is_fortran);
}
}
/** Generates print tensor accessor
*
* @param[out] output_stream (Optional) Output stream
*
* @return A print tensor accessor
*/
inline std::unique_ptr<graph::ITensorAccessor> get_print_output_accessor(std::ostream &output_stream = std::cout)
{
return std::make_unique<PrintAccessor>(output_stream);
}
/** Permutes a given tensor shape given the input and output data layout
*
* @param[in] tensor_shape Tensor shape to permute
* @param[in] in_data_layout Input tensor shape data layout
* @param[in] out_data_layout Output tensor shape data layout
*
* @return Permuted tensor shape
*/
inline TensorShape permute_shape(TensorShape tensor_shape, DataLayout in_data_layout, DataLayout out_data_layout)
{
if (in_data_layout != out_data_layout)
{
arm_compute::PermutationVector perm_vec = (in_data_layout == DataLayout::NCHW)
? arm_compute::PermutationVector(2U, 0U, 1U)
: arm_compute::PermutationVector(1U, 2U, 0U);
arm_compute::permute(tensor_shape, perm_vec);
}
return tensor_shape;
}
/** Utility function to return the TargetHint
*
* @param[in] target Integer value which expresses the selected target. Must be 0 for Arm® Neon™ or 1 for OpenCL or 2 (OpenCL with Tuner)
*
* @return the TargetHint
*/
inline graph::Target set_target_hint(int target)
{
ARM_COMPUTE_ERROR_ON_MSG(target > 2, "Invalid target. Target must be 0 (NEON), 1 (OpenCL), 2 (OpenCL + Tuner)");
if ((target == 1 || target == 2))
{
return graph::Target::CL;
}
else
{
return graph::Target::NEON;
}
}
} // namespace graph_utils
} // namespace arm_compute
#endif /* __ARM_COMPUTE_UTILS_GRAPH_UTILS_H__ */
|