1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
/*
* Copyright (c) 2016-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_UTILS_UTILS_H
#define ACL_UTILS_UTILS_H
/** @dir .
* brief Boiler plate code used by examples. Various utilities to print types, load / store assets, etc.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/runtime/Tensor.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wstrict-overflow"
#include "libnpy/npy.hpp"
#pragma GCC diagnostic pop
#include "support/StringSupport.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#endif /* ARM_COMPUTE_CL */
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <random>
#include <string>
#include <tuple>
#include <vector>
namespace arm_compute
{
namespace utils
{
/** Supported image types */
enum class ImageType
{
UNKNOWN,
PPM,
JPEG
};
/** Abstract Example class.
*
* All examples have to inherit from this class.
*/
class Example
{
public:
/** Setup the example.
*
* @param[in] argc Argument count.
* @param[in] argv Argument values.
*
* @return True in case of no errors in setup else false
*/
virtual bool do_setup(int argc, char **argv)
{
ARM_COMPUTE_UNUSED(argc, argv);
return true;
};
/** Run the example. */
virtual void do_run(){};
/** Teardown the example. */
virtual void do_teardown(){};
/** Default destructor. */
virtual ~Example() = default;
};
/** Run an example and handle the potential exceptions it throws
*
* @param[in] argc Number of command line arguments
* @param[in] argv Command line arguments
* @param[in] example Example to run
*/
int run_example(int argc, char **argv, std::unique_ptr<Example> example);
template <typename T>
int run_example(int argc, char **argv)
{
return run_example(argc, argv, std::make_unique<T>());
}
/** Draw a RGB rectangular window for the detected object
*
* @param[in, out] tensor Input tensor where the rectangle will be drawn on. Format supported: RGB888
* @param[in] rect Geometry of the rectangular window
* @param[in] r Red colour to use
* @param[in] g Green colour to use
* @param[in] b Blue colour to use
*/
void draw_detection_rectangle(
arm_compute::ITensor *tensor, const arm_compute::DetectionWindow &rect, uint8_t r, uint8_t g, uint8_t b);
/** Gets image type given a file
*
* @param[in] filename File to identify its image type
*
* @return Image type
*/
ImageType get_image_type_from_file(const std::string &filename);
/** Parse the ppm header from an input file stream. At the end of the execution,
* the file position pointer will be located at the first pixel stored in the ppm file
*
* @param[in] fs Input file stream to parse
*
* @return The width, height and max value stored in the header of the PPM file
*/
std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs);
/** Parse the npy header from an input file stream. At the end of the execution,
* the file position pointer will be located at the first pixel stored in the npy file //TODO
*
* @param[in] fs Input file stream to parse
*
* @return The width and height stored in the header of the NPY file
*/
npy::header_t parse_npy_header(std::ifstream &fs);
/** Obtain numpy type string from DataType.
*
* @param[in] data_type Data type.
*
* @return numpy type string.
*/
inline std::string get_typestring(DataType data_type)
{
// Check endianness
const unsigned int i = 1;
const char *c = reinterpret_cast<const char *>(&i);
std::string endianness;
if (*c == 1)
{
endianness = std::string("<");
}
else
{
endianness = std::string(">");
}
const std::string no_endianness("|");
switch (data_type)
{
case DataType::U8:
case DataType::QASYMM8:
return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
case DataType::S8:
case DataType::QSYMM8:
case DataType::QSYMM8_PER_CHANNEL:
return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
case DataType::U16:
case DataType::QASYMM16:
return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
case DataType::S16:
case DataType::QSYMM16:
return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
case DataType::U32:
return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
case DataType::S32:
return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
case DataType::U64:
return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
case DataType::S64:
return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
case DataType::F16:
return endianness + "f" + support::cpp11::to_string(sizeof(half));
case DataType::F32:
return endianness + "f" + support::cpp11::to_string(sizeof(float));
case DataType::F64:
return endianness + "f" + support::cpp11::to_string(sizeof(double));
case DataType::SIZET:
return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
default:
ARM_COMPUTE_ERROR("Data type not supported");
}
}
/** Maps a tensor if needed
*
* @param[in] tensor Tensor to be mapped
* @param[in] blocking Specified if map is blocking or not
*/
template <typename T>
inline void map(T &tensor, bool blocking)
{
ARM_COMPUTE_UNUSED(tensor);
ARM_COMPUTE_UNUSED(blocking);
}
/** Unmaps a tensor if needed
*
* @param tensor Tensor to be unmapped
*/
template <typename T>
inline void unmap(T &tensor)
{
ARM_COMPUTE_UNUSED(tensor);
}
#ifdef ARM_COMPUTE_CL
/** Maps a tensor if needed
*
* @param[in] tensor Tensor to be mapped
* @param[in] blocking Specified if map is blocking or not
*/
inline void map(CLTensor &tensor, bool blocking)
{
tensor.map(blocking);
}
/** Unmaps a tensor if needed
*
* @param tensor Tensor to be unmapped
*/
inline void unmap(CLTensor &tensor)
{
tensor.unmap();
}
#endif /* ARM_COMPUTE_CL */
/** Specialized class to generate random non-zero FP16 values.
* uniform_real_distribution<half> generates values that get rounded off to zero, causing
* differences between ACL and reference implementation
*/
template <typename T>
class uniform_real_distribution_16bit
{
static_assert(std::is_same<T, half>::value || std::is_same<T, bfloat16>::value,
"Only half and bfloat16 data types supported");
public:
using result_type = T;
/** Constructor
*
* @param[in] min Minimum value of the distribution
* @param[in] max Maximum value of the distribution
* @param[in] portable Boolean to indicate portable conversion in-between 16-bit and other data types
*/
explicit uniform_real_distribution_16bit(float min = 0.f, float max = 1.0, bool portable = false)
: _dist(min, max), _portable(portable)
{
}
/** () operator to generate next value
*
* @param[in] gen an uniform random bit generator object
*/
T operator()(std::mt19937 &gen)
{
return convert(_dist(gen));
}
private:
template <typename U = T>
inline typename std::enable_if<std::is_same<U, bfloat16>::value, bfloat16>::type convert(float x)
{
return bfloat16(x, _portable);
}
template <typename U = T>
inline typename std::enable_if<!std::is_same<U, bfloat16>::value, T>::type convert(float x)
{
return T(x);
}
std::uniform_real_distribution<float> _dist;
bool _portable;
};
/** Numpy data loader */
class NPYLoader
{
public:
/** Default constructor */
NPYLoader() : _fs(), _shape(), _fortran_order(false), _typestring(), _file_layout(DataLayout::NCHW)
{
}
/** Open a NPY file and reads its metadata
*
* @param[in] npy_filename File to open
* @param[in] file_layout (Optional) Layout in which the weights are stored in the file.
*/
void open(const std::string &npy_filename, DataLayout file_layout = DataLayout::NCHW)
{
ARM_COMPUTE_ERROR_ON(is_open());
try
{
_fs.open(npy_filename, std::ios::in | std::ios::binary);
ARM_COMPUTE_EXIT_ON_MSG_VAR(!_fs.good(), "Failed to load binary data from %s", npy_filename.c_str());
_fs.exceptions(std::ifstream::failbit | std::ifstream::badbit);
_file_layout = file_layout;
npy::header_t header = parse_npy_header(_fs);
_shape = header.shape;
_fortran_order = header.fortran_order;
_typestring = header.dtype.str();
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", npy_filename.c_str(), e.what());
}
}
/** Return true if a NPY file is currently open */
bool is_open()
{
return _fs.is_open();
}
/** Return true if a NPY file is in fortran order */
bool is_fortran()
{
return _fortran_order;
}
/** Initialise the tensor's metadata with the dimensions of the NPY file currently open
*
* @param[out] tensor Tensor to initialise
* @param[in] dt Data type to use for the tensor
*/
template <typename T>
void init_tensor(T &tensor, arm_compute::DataType dt)
{
ARM_COMPUTE_ERROR_ON(!is_open());
ARM_COMPUTE_ERROR_ON(dt != arm_compute::DataType::F32);
// Use the size of the input NPY tensor
TensorShape shape;
shape.set_num_dimensions(_shape.size());
for (size_t i = 0; i < _shape.size(); ++i)
{
size_t src = i;
if (_fortran_order)
{
src = _shape.size() - 1 - i;
}
shape.set(i, _shape.at(src));
}
arm_compute::TensorInfo tensor_info(shape, 1, dt);
tensor.allocator()->init(tensor_info);
}
/** Fill a tensor with the content of the currently open NPY file.
*
* @note If the tensor is a CLTensor, the function maps and unmaps the tensor
*
* @param[in,out] tensor Tensor to fill (Must be allocated, and of matching dimensions with the opened NPY).
*/
template <typename T>
void fill_tensor(T &tensor)
{
ARM_COMPUTE_ERROR_ON(!is_open());
ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::QASYMM8, arm_compute::DataType::S32,
arm_compute::DataType::F32, arm_compute::DataType::F16);
try
{
// Map buffer if creating a CLTensor
map(tensor, true);
// Check if the file is large enough to fill the tensor
const size_t current_position = _fs.tellg();
_fs.seekg(0, std::ios_base::end);
const size_t end_position = _fs.tellg();
_fs.seekg(current_position, std::ios_base::beg);
ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) <
tensor.info()->tensor_shape().total_size() * tensor.info()->element_size(),
"Not enough data in file");
ARM_COMPUTE_UNUSED(end_position);
// Check if the typestring matches the given one
std::string expect_typestr = get_typestring(tensor.info()->data_type());
bool enable_f32_to_f16_conversion = false;
if (_typestring != expect_typestr)
{
const std::string f32_typestring = "<f4";
const std::string f16_typestring = "<f2";
// if typestring does not match, check whether _typestring is F32 and can be downcasted to expect_typestr
if (_typestring == f32_typestring && expect_typestr == f16_typestring)
{
enable_f32_to_f16_conversion = true;
}
else
{
ARM_COMPUTE_ERROR("Typestrings mismatch");
}
}
bool are_layouts_different = (_file_layout != tensor.info()->data_layout());
// Correct dimensions (Needs to match TensorShape dimension corrections)
if (_shape.size() != tensor.info()->tensor_shape().num_dimensions())
{
for (int i = static_cast<int>(_shape.size()) - 1; i > 0; --i)
{
if (_shape[i] == 1)
{
_shape.pop_back();
}
else
{
break;
}
}
}
TensorShape permuted_shape = tensor.info()->tensor_shape();
arm_compute::PermutationVector perm;
if (are_layouts_different && tensor.info()->tensor_shape().num_dimensions() > 2)
{
perm = (tensor.info()->data_layout() == arm_compute::DataLayout::NHWC)
? arm_compute::PermutationVector(2U, 0U, 1U)
: arm_compute::PermutationVector(1U, 2U, 0U);
arm_compute::PermutationVector perm_vec =
(tensor.info()->data_layout() == arm_compute::DataLayout::NCHW)
? arm_compute::PermutationVector(2U, 0U, 1U)
: arm_compute::PermutationVector(1U, 2U, 0U);
arm_compute::permute(permuted_shape, perm_vec);
}
// Validate tensor shape
ARM_COMPUTE_ERROR_ON_MSG(_shape.size() != tensor.info()->tensor_shape().num_dimensions(),
"Tensor ranks mismatch");
for (size_t i = 0; i < _shape.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(permuted_shape[i] != _shape[i], "Tensor dimensions mismatch");
}
switch (tensor.info()->data_type())
{
case arm_compute::DataType::QASYMM8:
case arm_compute::DataType::S32:
case arm_compute::DataType::F32:
case arm_compute::DataType::F16:
{
// Read data
if (!are_layouts_different && !_fortran_order && tensor.info()->padding().empty() &&
!enable_f32_to_f16_conversion)
{
// If tensor has no padding read directly from stream.
_fs.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size());
}
else
{
// If tensor has padding or is in fortran order accessing tensor elements through execution window.
Window window;
const unsigned int num_dims = _shape.size();
if (_fortran_order)
{
for (unsigned int dim = 0; dim < num_dims; dim++)
{
permuted_shape.set(dim, _shape[num_dims - dim - 1]);
perm.set(dim, num_dims - dim - 1);
}
if (are_layouts_different)
{
// Permute only if num_dimensions greater than 2
if (num_dims > 2)
{
if (_file_layout == DataLayout::NHWC) // i.e destination is NCHW --> permute(1,2,0)
{
arm_compute::permute(perm, arm_compute::PermutationVector(1U, 2U, 0U));
}
else
{
arm_compute::permute(perm, arm_compute::PermutationVector(2U, 0U, 1U));
}
}
}
}
window.use_tensor_dimensions(permuted_shape);
execute_window_loop(window,
[&](const Coordinates &id)
{
Coordinates dst(id);
arm_compute::permute(dst, perm);
if (enable_f32_to_f16_conversion)
{
float f32_val = 0;
_fs.read(reinterpret_cast<char *>(&f32_val), 4u);
half f16_val =
half_float::half_cast<half, std::round_to_nearest>(f32_val);
*(reinterpret_cast<half *>(tensor.ptr_to_element(dst))) = f16_val;
}
else
{
_fs.read(reinterpret_cast<char *>(tensor.ptr_to_element(dst)),
tensor.info()->element_size());
}
});
}
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
// Unmap buffer if creating a CLTensor
unmap(tensor);
}
catch (const std::ifstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Loading NPY file: %s", e.what());
}
}
private:
std::ifstream _fs;
std::vector<unsigned long> _shape;
bool _fortran_order;
std::string _typestring;
DataLayout _file_layout;
};
/** Template helper function to save a tensor image to a PPM file.
*
* @note Only U8 and RGB888 formats supported.
* @note Only works with 2D tensors.
* @note If the input tensor is a CLTensor, the function maps and unmaps the image
*
* @param[in] tensor The tensor to save as PPM file
* @param[in] ppm_filename Filename of the file to create.
*/
template <typename T>
void save_to_ppm(T &tensor, const std::string &ppm_filename)
{
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&tensor, arm_compute::Format::RGB888, arm_compute::Format::U8);
ARM_COMPUTE_ERROR_ON(tensor.info()->num_dimensions() > 2);
std::ofstream fs;
try
{
fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
fs.open(ppm_filename, std::ios::out | std::ios::binary);
const unsigned int width = tensor.info()->tensor_shape()[0];
const unsigned int height = tensor.info()->tensor_shape()[1];
fs << "P6\n" << width << " " << height << " 255\n";
// Map buffer if creating a CLTensor
map(tensor, true);
switch (tensor.info()->format())
{
case arm_compute::Format::U8:
{
arm_compute::Window window;
window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, 1));
window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1));
arm_compute::Iterator in(&tensor, window);
arm_compute::execute_window_loop(
window,
[&](const arm_compute::Coordinates &)
{
const unsigned char value = *in.ptr();
fs << value << value << value;
},
in);
break;
}
case arm_compute::Format::RGB888:
{
arm_compute::Window window;
window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, width));
window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1));
arm_compute::Iterator in(&tensor, window);
arm_compute::execute_window_loop(
window,
[&](const arm_compute::Coordinates &) {
fs.write(reinterpret_cast<std::fstream::char_type *>(in.ptr()),
width * tensor.info()->element_size());
},
in);
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported format");
}
// Unmap buffer if creating a CLTensor
unmap(tensor);
}
catch (const std::ofstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", ppm_filename.c_str(), e.what());
}
}
/** Template helper function to save a tensor image to a NPY file.
*
* @note Only F32 data type supported.
* @note If the input tensor is a CLTensor, the function maps and unmaps the image
*
* @param[in] tensor The tensor to save as NPY file
* @param[in] npy_filename Filename of the file to create.
* @param[in] fortran_order If true, save matrix in fortran order.
*/
template <typename T, typename U = float>
void save_to_npy(T &tensor, const std::string &npy_filename, bool fortran_order)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::F32, arm_compute::DataType::QASYMM8);
std::ofstream fs;
try
{
fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
fs.open(npy_filename, std::ios::out | std::ios::binary);
std::vector<npy::ndarray_len_t> shape(tensor.info()->num_dimensions());
for (unsigned int i = 0, j = tensor.info()->num_dimensions() - 1; i < tensor.info()->num_dimensions(); ++i, --j)
{
shape[i] = tensor.info()->tensor_shape()[!fortran_order ? j : i];
}
// Map buffer if creating a CLTensor
map(tensor, true);
using typestring_type = typename std::conditional<std::is_floating_point<U>::value, float, qasymm8_t>::type;
std::vector<typestring_type> tmp; /* Used only to get the typestring */
const npy::dtype_t dtype = npy::dtype_map.at(std::type_index(typeid(tmp)));
std::ofstream stream(npy_filename, std::ofstream::binary);
npy::header_t header{dtype, fortran_order, shape};
npy::write_header(stream, header);
arm_compute::Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
arm_compute::Iterator in(&tensor, window);
arm_compute::execute_window_loop(
window,
[&](const arm_compute::Coordinates &)
{ stream.write(reinterpret_cast<const char *>(in.ptr()), sizeof(typestring_type)); },
in);
// Unmap buffer if creating a CLTensor
unmap(tensor);
}
catch (const std::ofstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", npy_filename.c_str(), e.what());
}
}
/** Load the tensor with pre-trained data from a binary file
*
* @param[in] tensor The tensor to be filled. Data type supported: F32.
* @param[in] filename Filename of the binary file to load from.
*/
template <typename T>
void load_trained_data(T &tensor, const std::string &filename)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
std::ifstream fs;
try
{
fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
// Open file
fs.open(filename, std::ios::in | std::ios::binary);
if (!fs.good())
{
throw std::runtime_error("Could not load binary data: " + filename);
}
// Map buffer if creating a CLTensor
map(tensor, true);
Window window;
window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, 1, 1));
for (unsigned int d = 1; d < tensor.info()->num_dimensions(); ++d)
{
window.set(d, Window::Dimension(0, tensor.info()->tensor_shape()[d], 1));
}
arm_compute::Iterator in(&tensor, window);
execute_window_loop(
window,
[&](const Coordinates &)
{
fs.read(reinterpret_cast<std::fstream::char_type *>(in.ptr()),
tensor.info()->tensor_shape()[0] * tensor.info()->element_size());
},
in);
// Unmap buffer if creating a CLTensor
unmap(tensor);
}
catch (const std::ofstream::failure &e)
{
ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", filename.c_str(), e.what());
}
}
template <typename T, typename TensorType>
void fill_tensor_value(TensorType &tensor, T value)
{
map(tensor, true);
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
Iterator it_tensor(&tensor, window);
execute_window_loop(
window, [&](const Coordinates &) { *reinterpret_cast<T *>(it_tensor.ptr()) = value; }, it_tensor);
unmap(tensor);
}
template <typename T, typename TensorType>
void fill_tensor_zero(TensorType &tensor)
{
fill_tensor_value(tensor, T(0));
}
template <typename T, typename TensorType>
void fill_tensor_vector(TensorType &tensor, std::vector<T> vec)
{
ARM_COMPUTE_ERROR_ON(tensor.info()->tensor_shape().total_size() != vec.size());
map(tensor, true);
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
int i = 0;
Iterator it_tensor(&tensor, window);
execute_window_loop(
window, [&](const Coordinates &) { *reinterpret_cast<T *>(it_tensor.ptr()) = vec.at(i++); }, it_tensor);
unmap(tensor);
}
template <typename T, typename TensorType>
void fill_random_tensor(TensorType &tensor,
std::random_device::result_type seed,
T lower_bound = std::numeric_limits<T>::lowest(),
T upper_bound = std::numeric_limits<T>::max())
{
constexpr bool is_fp_16bit = std::is_same<T, half>::value || std::is_same<T, bfloat16>::value;
constexpr bool is_integral = std::is_integral<T>::value && !is_fp_16bit;
using fp_dist_type = typename std::conditional<is_fp_16bit, arm_compute::utils::uniform_real_distribution_16bit<T>,
std::uniform_real_distribution<T>>::type;
using dist_type = typename std::conditional<is_integral, std::uniform_int_distribution<T>, fp_dist_type>::type;
std::mt19937 gen(seed);
dist_type dist(lower_bound, upper_bound);
map(tensor, true);
Window window;
window.use_tensor_dimensions(tensor.info()->tensor_shape());
Iterator it(&tensor, window);
execute_window_loop(
window, [&](const Coordinates &) { *reinterpret_cast<T *>(it.ptr()) = dist(gen); }, it);
unmap(tensor);
}
template <typename T, typename TensorType>
void fill_random_tensor(TensorType &tensor,
T lower_bound = std::numeric_limits<T>::lowest(),
T upper_bound = std::numeric_limits<T>::max())
{
std::random_device rd;
fill_random_tensor(tensor, rd(), lower_bound, upper_bound);
}
template <typename T>
void init_sgemm_output(T &dst, T &src0, T &src1, arm_compute::DataType dt)
{
dst.allocator()->init(TensorInfo(
TensorShape(src1.info()->dimension(0), src0.info()->dimension(1), src0.info()->dimension(2)), 1, dt));
}
/** This function returns the amount of memory free reading from /proc/meminfo
*
* @return The free memory in kB
*/
uint64_t get_mem_free_from_meminfo();
/** Compare two tensors
*
* @param[in] tensor1 First tensor to be compared.
* @param[in] tensor2 Second tensor to be compared.
* @param[in] tolerance Tolerance used for the comparison.
*
* @return The number of mismatches
*/
template <typename T>
int compare_tensor(ITensor &tensor1, ITensor &tensor2, T tolerance)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(&tensor1, &tensor2);
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(&tensor1, &tensor2);
int num_mismatches = 0;
Window window;
window.use_tensor_dimensions(tensor1.info()->tensor_shape());
map(tensor1, true);
map(tensor2, true);
Iterator itensor1(&tensor1, window);
Iterator itensor2(&tensor2, window);
execute_window_loop(
window,
[&](const Coordinates &)
{
if (std::abs(*reinterpret_cast<T *>(itensor1.ptr()) - *reinterpret_cast<T *>(itensor2.ptr())) > tolerance)
{
++num_mismatches;
}
},
itensor1, itensor2);
unmap(itensor1);
unmap(itensor2);
return num_mismatches;
}
} // namespace utils
} // namespace arm_compute
#endif // ACL_UTILS_UTILS_H
|