1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
|
Runtime Security Engine (RSE)
=============================
This document focuses on the relationship between the Runtime Security Engine
(RSE) and the application processor (AP). According to the ARM reference design
the RSE is an independent core next to the AP and the SCP on the same die. It
provides fundamental security guarantees and runtime services for the rest of
the system (e.g.: trusted boot, measured boot, platform attestation,
key management, and key derivation).
At power up RSE boots first from its private ROM code. It validates and loads
its own images and the initial images of SCP and AP. When AP and SCP are
released from reset and their initial code is loaded then they continue their
own boot process, which is the same as on non-RSE systems. Please refer to the
``RSE documentation`` [1]_ for more details about the RSE boot flow.
The last stage of the RSE firmware is a persistent, runtime component. Much
like AP_BL31, this is a passive entity which has no periodical task to do and
just waits for external requests from other subsystems. RSE and other
subsystems can communicate with each other over message exchange. RSE waits
in idle for the incoming request, handles them, and sends a response then goes
back to idle.
RSE communication layer
-----------------------
The communication between RSE and other subsystems are primarily relying on the
Message Handling Unit (MHU) module. The number of MHU interfaces between RSE
and other cores is IMPDEF. Besides MHU other modules also could take part in
the communication. RSE is capable of mapping the AP memory to its address space.
Thereby either RSE core itself or a DMA engine if it is present, can move the
data between memory belonging to RSE or AP. In this way, a bigger amount of data
can be transferred in a short time.
The MHU comes in pairs. There is a sender and receiver side. They are connected
to each other. An MHU interface consists of two pairs of MHUs, one sender and
one receiver on both sides. Bidirectional communication is possible over an
interface. One pair provides message sending from AP to RSE and the other pair
from RSE to AP. The sender and receiver are connected via channels. There is an
IMPDEF number of channels (e.g: 4-16) between a sender and a receiver module.
The RSE communication layer provides two ways for message exchange:
- ``Embedded messaging``: The full message, including header and payload, are
exchanged over the MHU channels. A channel is capable of delivering a single
word. The sender writes the data to the channel register on its side and the
receiver can read the data from the channel on the other side. One dedicated
channel is used for signalling. It does not deliver any payload it is just
meant for signalling that the sender loaded the data to the channel registers
so the receiver can read them. The receiver uses the same channel to signal
that data was read. Signalling happens via IRQ. If the message is longer than
the data fit to the channel registers then the message is sent over in
multiple rounds. Both, sender and receiver allocate a local buffer for the
messages. Data is copied from/to these buffers to/from the channel registers.
- ``Pointer-access messaging``: The message header and the payload are
separated and they are conveyed in different ways. The header is sent
over the channels, similar to the embedded messaging but the payload is
copied over by RSE core (or by DMA) between the sender and the receiver. This
could be useful in the case of long messages because transaction time is less
compared to the embedded messaging mode. Small payloads are copied by the RSE
core because setting up DMA would require more CPU cycles. The payload is
either copied into an internal buffer or directly read-written by RSE. Actual
behavior depends on RSE setup, whether the partition supports memory-mapped
``iovec``. Therefore, the sender must handle both cases and prevent access to
the memory, where payload data lives, while the RSE handles the request.
The RSE communication layer supports both ways of messaging in parallel. It is
decided at runtime based on the message size which way to transfer the message.
.. code-block:: bash
+----------------------------------------------+ +-------------------+
| | | |
| AP | | |
| | +--->| SRAM |
+----------------------------------------------| | | |
| BL1 / BL2 / BL31 | | | |
+----------------------------------------------+ | +-------------------+
| ^ | ^ ^
| send IRQ | receive |direct | |
V | |access | |
+--------------------+ +--------------------+ | | |
| MHU sender | | MHU receiver | | | Copy data |
+--------------------+ +--------------------+ | | |
| | | | | | | | | | |
| | channels | | | | channels | | | | |
| | e.g: 4-16 | | | | e.g: 4-16 | | | V |
+--------------------+ +--------------------+ | +-------+ |
| MHU receiver | | MHU sender | | +->| DMA | |
+--------------------+ +--------------------+ | | +-------+ |
| ^ | | ^ |
IRQ | receive | send | | | Copy data |
V | | | V V
+----------------------------------------------+ | | +-------------------+
| |--+-+ | |
| RSE | | SRAM |
| | | |
+----------------------------------------------+ +-------------------+
.. Note::
The RSE communication layer is not prepared for concurrent execution. The
current use case only requires message exchange during the boot phase. In
the boot phase, only a single core is running and the rest of the cores are
in reset.
Message structure
^^^^^^^^^^^^^^^^^
A description of the message format can be found in the ``RSE communication
design`` [2]_ document.
Source files
^^^^^^^^^^^^
- RSE comms: ``drivers/arm/rse``
- MHU driver: ``drivers/arm/mhu``
API for communication over MHU
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The API is defined in these header files:
- ``include/drivers/arm/rse_comms.h``
- ``include/drivers/arm/mhu.h``
RSE provided runtime services
-----------------------------
RSE provides the following runtime services:
- ``Measured boot``: Securely store the firmware measurements which were
computed during the boot process and the associated metadata (image
description, measurement algorithm, etc.). More info on measured boot service
in RSE can be found in the ``measured_boot_integration_guide`` [3]_ .
- ``Delegated attestation``: Query the platform attestation token and derive a
delegated attestation key. More info on the delegated attestation service
in RSE can be found in the ``delegated_attestation_integration_guide`` [4]_ .
- ``OTP assets management``: Public keys used by AP during the trusted boot
process can be requested from RSE. Furthermore, AP can request RSE to
increase a non-volatile counter. Please refer to the
``RSE key management`` [5]_ document for more details.
- ``DICE Protection Environment``: Securely store the firmware measurements
which were computed during the boot process and the associated metadata. It is
also capable of representing the boot measurements in the form of a
certificate chain, which is queriable. Please refer to the
``DICE Protection Environment (DPE)`` [8]_ document for more details.
Runtime service API
^^^^^^^^^^^^^^^^^^^
The RSE provided runtime services implement a PSA aligned API. The parameter
encoding follows the PSA client protocol described in the
``Firmware Framework for M`` [6]_ document in chapter 4.4. The implementation is
restricted to the static handle use case therefore only the ``psa_call`` API is
implemented.
Software and API layers
^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
+----------------+ +---------------------+
| BL1 / BL2 | | BL31 |
+----------------+ +---------------------+
| |
| extend_measurement() | get_delegated_key()
| | get_platform_token()
V V
+----------------+ +---------------------+
| PSA protocol | | PSA protocol |
+----------------+ +---------------------+
| |
| psa_call() | psa_call()
| |
V V
+------------------------------------------------+
| RSE communication protocol |
+------------------------------------------------+
| ^
| mhu_send_data() | mhu_receive_data()
| |
V |
+------------------------------------------------+
| MHU driver |
+------------------------------------------------+
| ^
| Register access | IRQ
V |
+------------------------------------------------+
| MHU HW on AP side |
+------------------------------------------------+
^
| Physical wires
|
V
+------------------------------------------------+
| MHU HW on RSE side |
+------------------------------------------------+
| ^
| IRQ | Register access
V |
+------------------------------------------------+
| MHU driver |
+------------------------------------------------+
| |
V V
+---------------+ +------------------------+
| Measured boot | | Delegated attestation |
| service | | service |
+---------------+ +------------------------+
RSE based Measured Boot
-----------------------
Measured Boot is the process of cryptographically measuring (computing the hash
value of a binary) the code and critical data used at boot time. The
measurement must be stored in a tamper-resistant way, so the security state
of the device can be attested later to an external party. RSE provides a runtime
service which is meant to store measurements and associated metadata alongside.
Data is stored in internal SRAM which is only accessible by the secure runtime
firmware of RSE. Data is stored in so-called measurement slots. A platform has
IMPDEF number of measurement slots. The measurement storage follows extend
semantics. This means that measurements are not stored directly (as it was
taken) instead they contribute to the current value of the measurement slot.
The extension implements this logic, where ``||`` stands for concatenation:
.. code-block:: bash
new_value_of_measurement_slot = Hash(old_value_of_measurement_slot || measurement)
Supported hash algorithms: sha-256, sha-512
Measured Boot API
^^^^^^^^^^^^^^^^^
Defined here:
- ``include/lib/psa/measured_boot.h``
.. code-block:: c
psa_status_t
rse_measured_boot_extend_measurement(uint8_t index,
const uint8_t *signer_id,
size_t signer_id_size,
const uint8_t *version,
size_t version_size,
uint32_t measurement_algo,
const uint8_t *sw_type,
size_t sw_type_size,
const uint8_t *measurement_value,
size_t measurement_value_size,
bool lock_measurement);
Measured Boot Metadata
^^^^^^^^^^^^^^^^^^^^^^
The following metadata can be stored alongside the measurement:
- ``Signer-id``: Mandatory. The hash of the firmware image signing public key.
- ``Measurement algorithm``: Optional. The hash algorithm which was used to
compute the measurement (e.g.: sha-256, etc.).
- ``Version info``: Optional. The firmware version info (e.g.: 2.7).
- ``SW type``: Optional. Short text description (e.g.: BL1, BL2, BL31, etc.)
.. Note::
Version info is not implemented in TF-A yet.
The caller must specify in which measurement slot to extend a certain
measurement and metadata. A measurement slot can be extended by multiple
measurements. The default value is IMPDEF. All measurement slot is cleared at
reset, there is no other way to clear them. In the reference implementation,
the measurement slots are initialized to 0. At the first call to extend the
measurement in a slot, the extend operation uses the default value of the
measurement slot. All upcoming extend operation on the same slot contributes
to the previous value of that measurement slot.
The following rules are kept when a slot is extended multiple times:
- ``Signer-id`` must be the same as the previous call(s), otherwise a
PSA_ERROR_NOT_PERMITTED error code is returned.
- ``Measurement algorithm``: must be the same as the previous call(s),
otherwise, a PSA_ERROR_NOT_PERMITTED error code is returned.
In case of error no further action is taken (slot is not locked). If there is
a valid data in a sub-sequent call then measurement slot will be extended. The
rest of the metadata is handled as follows when a measurement slot is extended
multiple times:
- ``SW type``: Cleared.
- ``Version info``: Cleared.
.. Note::
Extending multiple measurements in the same slot leads to some metadata
information loss. Since RSE is not constrained on special HW resources to
store the measurements and metadata, therefore it is worth considering to
store all of them one by one in distinct slots. However, they are one-by-one
included in the platform attestation token. So, the number of distinct
firmware image measurements has an impact on the size of the attestation
token.
The allocation of the measurement slot among RSE, Root and Realm worlds is
platform dependent. The platform must provide an allocation of the measurement
slot at build time. An example can be found in
``tf-a/plat/arm/board/tc/tc_bl1_measured_boot.c``
Furthermore, the memory, which holds the metadata is also statically allocated
in RSE memory. Some of the fields have a static value (measurement algorithm),
and some of the values have a dynamic value (measurement value) which is updated
by the bootloaders when the firmware image is loaded and measured. The metadata
structure is defined in
``include/drivers/measured_boot/rse/rse_measured_boot.h``.
.. code-block:: c
struct rse_mboot_metadata {
unsigned int id;
uint8_t slot;
uint8_t signer_id[SIGNER_ID_MAX_SIZE];
size_t signer_id_size;
uint8_t version[VERSION_MAX_SIZE];
size_t version_size;
uint8_t sw_type[SW_TYPE_MAX_SIZE];
size_t sw_type_size;
void *pk_oid;
bool lock_measurement;
};
Signer-ID API
^^^^^^^^^^^^^
This function calculates the hash of a public key (signer-ID) using the
``Measurement algorithm`` and stores it in the ``rse_mboot_metadata`` field
named ``signer_id``.
Prior to calling this function, the caller must ensure that the ``signer_id``
field points to the zero-filled buffer.
Defined here:
- ``include/drivers/measured_boot/rse/rse_measured_boot.h``
.. code-block:: c
int rse_mboot_set_signer_id(struct rse_mboot_metadata *metadata_ptr,
const void *pk_oid,
const void *pk_ptr,
size_t pk_len)
- First parameter is the pointer to the ``rse_mboot_metadata`` structure.
- Second parameter is the pointer to the key-OID of the public key.
- Third parameter is the pointer to the public key buffer.
- Fourth parameter is the size of public key buffer.
- This function returns 0 on success, a signed integer error code
otherwise.
Build time config options
^^^^^^^^^^^^^^^^^^^^^^^^^
- ``MEASURED_BOOT``: Enable measured boot.
- ``MBOOT_RSE_HASH_ALG``: Determine the hash algorithm to measure the images.
The default value is sha-256.
Measured boot flow
^^^^^^^^^^^^^^^^^^
.. figure:: ../resources/diagrams/rse_measured_boot_flow.svg
:align: center
Sample console log
^^^^^^^^^^^^^^^^^^
.. code-block:: bash
INFO: Measured boot extend measurement:
INFO: - slot : 6
INFO: - signer_id : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : FW_CONFIG
INFO: - sw_type_size: 10
INFO: - algorithm : 2000009
INFO: - measurement : aa ea d3 a7 a8 e2 ab 7d 13 a6 cb 34 99 10 b9 a1
INFO: : 1b 9f a0 52 c5 a8 b1 d7 76 f2 c1 c1 ef ca 1a df
INFO: - locking : true
INFO: FCONF: Config file with image ID:31 loaded at address = 0x4001010
INFO: Loading image id=24 at address 0x4001300
INFO: Image id=24 loaded: 0x4001300 - 0x400153a
INFO: Measured boot extend measurement:
INFO: - slot : 7
INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : TB_FW_CONFIG
INFO: - sw_type_size: 13
INFO: - algorithm : 2000009
INFO: - measurement : 05 b9 dc 98 62 26 a7 1c 2d e5 bb af f0 90 52 28
INFO: : f2 24 15 8a 3a 56 60 95 d6 51 3a 7a 1a 50 9b b7
INFO: - locking : true
INFO: FCONF: Config file with image ID:24 loaded at address = 0x4001300
INFO: BL1: Loading BL2
INFO: Loading image id=1 at address 0x404d000
INFO: Image id=1 loaded: 0x404d000 - 0x406412a
INFO: Measured boot extend measurement:
INFO: - slot : 8
INFO: - signer_id : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
INFO: : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
INFO: - version :
INFO: - version_size: 0
INFO: - sw_type : BL_2
INFO: - sw_type_size: 5
INFO: - algorithm : 2000009
INFO: - measurement : 53 a1 51 75 25 90 fb a1 d9 b8 c8 34 32 3a 01 16
INFO: : c9 9e 74 91 7d 28 02 56 3f 5c 40 94 37 58 50 68
INFO: - locking : true
Delegated Attestation
---------------------
Delegated Attestation Service was mainly developed to support the attestation
flow on the ``ARM Confidential Compute Architecture`` (ARM CCA) [7]_.
The detailed description of the delegated attestation service can be found in
the ``Delegated Attestation Service Integration Guide`` [4]_ document.
In the CCA use case, the Realm Management Monitor (RMM) relies on the delegated
attestation service of the RSE to get a realm attestation key and the CCA
platform token. BL31 does not use the service for its own purpose, only calls
it on behalf of RMM. The access to MHU interface and thereby to RSE is
restricted to BL31 only. Therefore, RMM does not have direct access, all calls
need to go through BL31. The RMM dispatcher module of the BL31 is responsible
for delivering the calls between the two parties.
Delegated Attestation API
^^^^^^^^^^^^^^^^^^^^^^^^^
Defined here:
- ``include/lib/psa/delegated_attestation.h``
.. code-block:: c
psa_status_t
rse_delegated_attest_get_delegated_key(uint8_t ecc_curve,
uint32_t key_bits,
uint8_t *key_buf,
size_t key_buf_size,
size_t *key_size,
uint32_t hash_algo);
psa_status_t
rse_delegated_attest_get_token(const uint8_t *dak_pub_hash,
size_t dak_pub_hash_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);
Attestation flow
^^^^^^^^^^^^^^^^
.. figure:: ../resources/diagrams/rse_attestation_flow.svg
:align: center
Sample attestation token
^^^^^^^^^^^^^^^^^^^^^^^^
Binary format:
.. code-block:: bash
INFO: DELEGATED ATTEST TEST START
INFO: Get delegated attestation key start
INFO: Get delegated attest key succeeds, len: 48
INFO: Delegated attest key:
INFO: 0d 2a 66 61 d4 89 17 e1 70 c6 73 56 df f4 11 fd
INFO: 7d 1f 3b 8a a3 30 3d 70 4c d9 06 c3 c7 ef 29 43
INFO: 0f ee b5 e7 56 e0 71 74 1b c4 39 39 fd 85 f6 7b
INFO: Get platform token start
INFO: Get platform token succeeds, len: 1086
INFO: Platform attestation token:
INFO: d2 84 44 a1 01 38 22 a0 59 05 81 a9 19 01 09 78
INFO: 23 74 61 67 3a 61 72 6d 2e 63 6f 6d 2c 32 30 32
INFO: 33 3a 63 63 61 5f 70 6c 61 74 66 6f 72 6d 23 31
INFO: 2e 30 2e 30 0a 58 20 0d 22 e0 8a 98 46 90 58 48
INFO: 63 18 28 34 89 bd b3 6f 09 db ef eb 18 64 df 43
INFO: 3f a6 e5 4e a2 d7 11 19 09 5c 58 20 7f 45 4c 46
INFO: 02 01 01 00 00 00 00 00 00 00 00 00 03 00 3e 00
INFO: 01 00 00 00 50 58 00 00 00 00 00 00 19 01 00 58
INFO: 21 01 07 06 05 04 03 02 01 00 0f 0e 0d 0c 0b 0a
INFO: 09 08 17 16 15 14 13 12 11 10 1f 1e 1d 1c 1b 1a
INFO: 19 18 19 09 61 44 cf cf cf cf 19 09 5b 19 30 03
INFO: 19 09 62 67 73 68 61 2d 32 35 36 19 09 60 78 3a
INFO: 68 74 74 70 73 3a 2f 2f 76 65 72 61 69 73 6f 6e
INFO: 2e 65 78 61 6d 70 6c 65 2f 2e 77 65 6c 6c 2d 6b
INFO: 6e 6f 77 6e 2f 76 65 72 61 69 73 6f 6e 2f 76 65
INFO: 72 69 66 69 63 61 74 69 6f 6e 19 09 5f 8d a4 01
INFO: 69 52 53 45 5f 42 4c 31 5f 32 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: 9a 27 1f 2a 91 6b 0b 6e e6 ce cb 24 26 f0 b3 20
INFO: 6e f0 74 57 8b e5 5d 9b c9 4f 6f 3f e3 ab 86 aa
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 67 52 53 45 5f
INFO: 42 4c 32 05 58 20 53 78 79 63 07 53 5d f3 ec 8d
INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38
INFO: c0 fa 97 3f 7a a3 02 58 20 53 c2 34 e5 e8 47 2b
INFO: 6a c5 1c 1a e1 ca b3 fe 06 fa d0 53 be b8 eb fd
INFO: 89 77 b0 10 65 5b fd d3 c3 06 67 73 68 61 2d 32
INFO: 35 36 a4 01 65 52 53 45 5f 53 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: 11 21 cf cc d5 91 3f 0a 63 fe c4 0a 6f fd 44 ea
INFO: 64 f9 dc 13 5c 66 63 4b a0 01 d1 0b cf 43 02 a2
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 66 41 50 5f 42
INFO: 4c 31 05 58 20 53 78 79 63 07 53 5d f3 ec 8d 8b
INFO: 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 c0
INFO: fa 97 3f 7a a3 02 58 20 15 71 b5 ec 78 bd 68 51
INFO: 2b f7 83 0b b6 a2 a4 4b 20 47 c7 df 57 bc e7 9e
INFO: b8 a1 c0 e5 be a0 a5 01 06 67 73 68 61 2d 32 35
INFO: 36 a4 01 66 41 50 5f 42 4c 32 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: 10 15 9b af 26 2b 43 a9 2d 95 db 59 da e1 f7 2c
INFO: 64 51 27 30 16 61 e0 a3 ce 4e 38 b2 95 a9 7c 58
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 67 53 43 50 5f
INFO: 42 4c 31 05 58 20 53 78 79 63 07 53 5d f3 ec 8d
INFO: 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38
INFO: c0 fa 97 3f 7a a3 02 58 20 10 12 2e 85 6b 3f cd
INFO: 49 f0 63 63 63 17 47 61 49 cb 73 0a 1a a1 cf aa
INFO: d8 18 55 2b 72 f5 6d 6f 68 06 67 73 68 61 2d 32
INFO: 35 36 a4 01 67 53 43 50 5f 42 4c 32 05 58 20 f1
INFO: 4b 49 87 90 4b cb 58 14 e4 45 9a 05 7e d4 d2 0f
INFO: 58 a6 33 15 22 88 a7 61 21 4d cd 28 78 0b 56 02
INFO: 58 20 aa 67 a1 69 b0 bb a2 17 aa 0a a8 8a 65 34
INFO: 69 20 c8 4c 42 44 7c 36 ba 5f 7e a6 5f 42 2c 1f
INFO: e5 d8 06 67 73 68 61 2d 32 35 36 a4 01 67 41 50
INFO: 5f 42 4c 33 31 05 58 20 53 78 79 63 07 53 5d f3
INFO: ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3
INFO: 22 38 c0 fa 97 3f 7a a3 02 58 20 2e 6d 31 a5 98
INFO: 3a 91 25 1b fa e5 ae fa 1c 0a 19 d8 ba 3c f6 01
INFO: d0 e8 a7 06 b4 cf a9 66 1a 6b 8a 06 67 73 68 61
INFO: 2d 32 35 36 a4 01 63 52 4d 4d 05 58 20 53 78 79
INFO: 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
INFO: 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
INFO: a1 fb 50 e6 c8 6f ae 16 79 ef 33 51 29 6f d6 71
INFO: 34 11 a0 8c f8 dd 17 90 a4 fd 05 fa e8 68 81 64
INFO: 06 67 73 68 61 2d 32 35 36 a4 01 69 48 57 5f 43
INFO: 4f 4e 46 49 47 05 58 20 53 78 79 63 07 53 5d f3
INFO: ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3
INFO: 22 38 c0 fa 97 3f 7a a3 02 58 20 1a 25 24 02 97
INFO: 2f 60 57 fa 53 cc 17 2b 52 b9 ff ca 69 8e 18 31
INFO: 1f ac d0 f3 b0 6e ca ae f7 9e 17 06 67 73 68 61
INFO: 2d 32 35 36 a4 01 69 46 57 5f 43 4f 4e 46 49 47
INFO: 05 58 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2
INFO: e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97
INFO: 3f 7a a3 02 58 20 9a 92 ad bc 0c ee 38 ef 65 8c
INFO: 71 ce 1b 1b f8 c6 56 68 f1 66 bf b2 13 64 4c 89
INFO: 5c cb 1a d0 7a 25 06 67 73 68 61 2d 32 35 36 a4
INFO: 01 6c 54 42 5f 46 57 5f 43 4f 4e 46 49 47 05 58
INFO: 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc
INFO: 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a
INFO: a3 02 58 20 23 89 03 18 0c c1 04 ec 2c 5d 8b 3f
INFO: 20 c5 bc 61 b3 89 ec 0a 96 7d f8 cc 20 8c dc 7c
INFO: d4 54 17 4f 06 67 73 68 61 2d 32 35 36 a4 01 6d
INFO: 53 4f 43 5f 46 57 5f 43 4f 4e 46 49 47 05 58 20
INFO: 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56
INFO: 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3
INFO: 02 58 20 e6 c2 1e 8d 26 0f e7 18 82 de bd b3 39
INFO: d2 40 2a 2c a7 64 85 29 bc 23 03 f4 86 49 bc e0
INFO: 38 00 17 06 67 73 68 61 2d 32 35 36 58 60 31 d0
INFO: 4d 52 cc de 95 2c 1e 32 cb a1 81 88 5a 40 b8 cc
INFO: 38 e0 52 8c 1e 89 58 98 07 64 2a a5 e3 f2 bc 37
INFO: f9 53 74 50 6b ff 4d 2e 4b e7 06 3c 4d 72 41 92
INFO: 70 c7 22 e8 d4 d9 3e e8 b6 c9 fa ce 3b 43 c9 76
INFO: 1a 49 94 1a b6 f3 8f fd ff 49 6a d4 63 b4 cb fa
INFO: 11 d8 3e 23 e3 1f 7f 62 32 9d e3 0c 1c c8
INFO: DELEGATED ATTEST TEST END
JSON format:
.. code-block:: JSON
{
"CCA_ATTESTATION_PROFILE": "tag:arm.com,2023:cca_platform#1.0.0",
"CCA_PLATFORM_CHALLENGE": "b'0D22E08A98469058486318283489BDB36F09DBEFEB1864DF433FA6E54EA2D711'",
"CCA_PLATFORM_IMPLEMENTATION_ID": "b'7F454C4602010100000000000000000003003E00010000005058000000000000'",
"CCA_PLATFORM_INSTANCE_ID": "b'0107060504030201000F0E0D0C0B0A090817161514131211101F1E1D1C1B1A1918'",
"CCA_PLATFORM_CONFIG": "b'CFCFCFCF'",
"CCA_PLATFORM_LIFECYCLE": "secured_3003",
"CCA_PLATFORM_HASH_ALGO_ID": "sha-256",
"CCA_PLATFORM_VERIFICATION_SERVICE": "https://veraison.example/.well-known/veraison/verification",
"CCA_PLATFORM_SW_COMPONENTS": [
{
"SW_COMPONENT_TYPE": "RSE_BL1_2",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'9A271F2A916B0B6EE6CECB2426F0B3206EF074578BE55D9BC94F6F3FE3AB86AA'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "RSE_BL2",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'53C234E5E8472B6AC51C1AE1CAB3FE06FAD053BEB8EBFD8977B010655BFDD3C3'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "RSE_S",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'1121CFCCD5913F0A63FEC40A6FFD44EA64F9DC135C66634BA001D10BCF4302A2'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "AP_BL1",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'1571B5EC78BD68512BF7830BB6A2A44B2047C7DF57BCE79EB8A1C0E5BEA0A501'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "AP_BL2",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'10159BAF262B43A92D95DB59DAE1F72C645127301661E0A3CE4E38B295A97C58'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "SCP_BL1",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'10122E856B3FCD49F063636317476149CB730A1AA1CFAAD818552B72F56D6F68'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "SCP_BL2",
"SIGNER_ID": "b'F14B4987904BCB5814E4459A057ED4D20F58A633152288A761214DCD28780B56'",
"MEASUREMENT_VALUE": "b'AA67A169B0BBA217AA0AA88A65346920C84C42447C36BA5F7EA65F422C1FE5D8'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "AP_BL31",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'2E6D31A5983A91251BFAE5AEFA1C0A19D8BA3CF601D0E8A706B4CFA9661A6B8A'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "RMM",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'A1FB50E6C86FAE1679EF3351296FD6713411A08CF8DD1790A4FD05FAE8688164'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "HW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'1A252402972F6057FA53CC172B52B9FFCA698E18311FACD0F3B06ECAAEF79E17'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "FW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'9A92ADBC0CEE38EF658C71CE1B1BF8C65668F166BFB213644C895CCB1AD07A25'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "TB_FW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'238903180CC104EC2C5D8B3F20C5BC61B389EC0A967DF8CC208CDC7CD454174F'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
},
{
"SW_COMPONENT_TYPE": "SOC_FW_CONFIG",
"SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
"MEASUREMENT_VALUE": "b'E6C21E8D260FE71882DEBDB339D2402A2CA7648529BC2303F48649BCE0380017'",
"CCA_SW_COMPONENT_HASH_ID": "sha-256"
}
]
}
RSE based DICE Protection Environment
-------------------------------------
The ``DICE Protection Environment (DPE)`` [8]_ service makes it possible to
execute |DICE| commands within an isolated execution environment. It provides
clients with an interface to send DICE commands, encoded as CBOR objects,
that act on opaque context handles. The |DPE| service performs |DICE|
derivations and certification on its internal contexts, without exposing the
|DICE| secrets (private keys and CDIs) outside of the isolated execution
environment.
|DPE| API
^^^^^^^^^
Defined here:
- ``include/lib/psa/dice_protection_environment.h``
.. code-block:: c
dpe_error_t
dpe_derive_context(int context_handle,
uint32_t cert_id,
bool retain_parent_context,
bool allow_new_context_to_derive,
bool create_certificate,
const DiceInputValues *dice_inputs,
int32_t target_locality,
bool return_certificate,
bool allow_new_context_to_export,
bool export_cdi,
int *new_context_handle,
int *new_parent_context_handle,
uint8_t *new_certificate_buf,
size_t new_certificate_buf_size,
size_t *new_certificate_actual_size,
uint8_t *exported_cdi_buf,
size_t exported_cdi_buf_size,
size_t *exported_cdi_actual_size);
Build time config options
^^^^^^^^^^^^^^^^^^^^^^^^^
- ``MEASURED_BOOT``: Enable measured boot.
- ``DICE_PROTECTION_ENVIRONMENT``: Boolean flag to specify the measured boot
backend when |RSE| based ``MEASURED_BOOT`` is enabled. The default value is
``0``. When set to ``1`` then measurements and additional metadata collected
during the measured boot process are sent to the |DPE| for storage and
processing.
- ``DPE_ALG_ID``: Determine the hash algorithm to measure the images. The
default value is sha-256.
Example certificate chain
^^^^^^^^^^^^^^^^^^^^^^^^^
``plat/arm/board/tc/tc_dpe.h``
RSE OTP Assets Management
-------------------------
RSE provides access for AP to assets in OTP, which include keys for image
signature verification and non-volatile counters for anti-rollback protection.
Non-Volatile Counter API
^^^^^^^^^^^^^^^^^^^^^^^^
AP/RSE interface for retrieving and incrementing non-volatile counters API is
as follows.
Defined here:
- ``include/lib/psa/rse_platform_api.h``
.. code-block:: c
psa_status_t rse_platform_nv_counter_increment(uint32_t counter_id)
psa_status_t rse_platform_nv_counter_read(uint32_t counter_id,
uint32_t size, uint8_t *val)
Through this service, we can read/increment any of the 3 non-volatile
counters used on an Arm CCA platform:
- ``Non-volatile counter for CCA firmware (BL2, BL31, RMM).``
- ``Non-volatile counter for secure firmware.``
- ``Non-volatile counter for non-secure firmware.``
Public Key API
^^^^^^^^^^^^^^
AP/RSE interface for reading the ROTPK is as follows.
Defined here:
- ``include/lib/psa/rse_platform_api.h``
.. code-block:: c
psa_status_t rse_platform_key_read(enum rse_key_id_builtin_t key,
uint8_t *data, size_t data_size, size_t *data_length)
Through this service, we can read any of the 3 ROTPKs used on an
Arm CCA platform:
- ``ROTPK for CCA firmware (BL2, BL31, RMM).``
- ``ROTPK for secure firmware.``
- ``ROTPK for non-secure firmware.``
References
----------
.. [1] https://trustedfirmware-m.readthedocs.io/en/latest/platform/arm/rse/index.html
.. [2] https://trustedfirmware-m.readthedocs.io/en/latest/platform/arm/rse/rse_comms.html
.. [3] https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/measured_boot_integration_guide.html
.. [4] https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/delegated_attestation/delegated_attest_integration_guide.html
.. [5] https://trustedfirmware-m.readthedocs.io/en/latest/platform/arm/rse/rse_key_management.html
.. [6] https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93
.. [7] https://developer.arm.com/documentation/DEN0096/A_a/?lang=en
.. [8] https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/dice_protection_environment/dice_protection_environment.html
--------------
*Copyright (c) 2023-2024, Arm Limited. All rights reserved.*
*Copyright (c) 2024, Linaro Limited. All rights reserved.*
|