File: rse.rst

package info (click to toggle)
arm-trusted-firmware 2.12.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 43,768 kB
  • sloc: ansic: 451,243; asm: 28,729; python: 2,703; makefile: 2,048; javascript: 139; sh: 33
file content (799 lines) | stat: -rw-r--r-- 38,868 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
Runtime Security Engine (RSE)
=============================

This document focuses on the relationship between the Runtime Security Engine
(RSE) and the application processor (AP). According to the ARM reference design
the RSE is an independent core next to the AP and the SCP on the same die. It
provides fundamental security guarantees and runtime services for the rest of
the system (e.g.: trusted boot, measured boot, platform attestation,
key management, and key derivation).

At power up RSE boots first from its private ROM code. It validates and loads
its own images and the initial images of SCP and AP. When AP and SCP are
released from reset and their initial code is loaded then they continue their
own boot process, which is the same as on non-RSE systems. Please refer to the
``RSE documentation`` [1]_ for more details about the RSE boot flow.

The last stage of the RSE firmware is a persistent, runtime component. Much
like AP_BL31, this is a passive entity which has no periodical task to do and
just waits for external requests from other subsystems. RSE and other
subsystems can communicate with each other over message exchange. RSE waits
in idle for the incoming request, handles them, and sends a response then goes
back to idle.

RSE communication layer
-----------------------

The communication between RSE and other subsystems are primarily relying on the
Message Handling Unit (MHU) module. The number of MHU interfaces between RSE
and other cores is IMPDEF. Besides MHU other modules also could take part in
the communication. RSE is capable of mapping the AP memory to its address space.
Thereby either RSE core itself or a DMA engine if it is present, can move the
data between memory belonging to RSE or AP. In this way, a bigger amount of data
can be transferred in a short time.

The MHU comes in pairs. There is a sender and receiver side. They are connected
to each other. An MHU interface consists of two pairs of MHUs, one sender and
one receiver on both sides. Bidirectional communication is possible over an
interface. One pair provides message sending from AP to RSE and the other pair
from RSE to AP. The sender and receiver are connected via channels. There is an
IMPDEF number of channels (e.g: 4-16) between a sender and a receiver module.

The RSE communication layer provides two ways for message exchange:

- ``Embedded messaging``: The full message, including header and payload, are
  exchanged over the MHU channels. A channel is capable of delivering a single
  word. The sender writes the data to the channel register on its side and the
  receiver can read the data from the channel on the other side. One dedicated
  channel is used for signalling. It does not deliver any payload it is just
  meant for signalling that the sender loaded the data to the channel registers
  so the receiver can read them. The receiver uses the same channel to signal
  that data was read. Signalling happens via IRQ. If the message is longer than
  the data fit to the channel registers then the message is sent over in
  multiple rounds. Both, sender and receiver allocate a local buffer for the
  messages. Data is copied from/to these buffers to/from the channel registers.
- ``Pointer-access messaging``: The message header and the payload are
  separated and they are conveyed in different ways. The header is sent
  over the channels, similar to the embedded messaging but the payload is
  copied over by RSE core (or by DMA) between the sender and the receiver. This
  could be useful in the case of long messages because transaction time is less
  compared to the embedded messaging mode. Small payloads are copied by the RSE
  core because setting up DMA would require more CPU cycles. The payload is
  either copied into an internal buffer or directly read-written by RSE. Actual
  behavior depends on RSE setup, whether the partition supports memory-mapped
  ``iovec``. Therefore, the sender must handle both cases and prevent access to
  the memory, where payload data lives, while the RSE handles the request.

The RSE communication layer supports both ways of messaging in parallel. It is
decided at runtime based on the message size which way to transfer the message.

.. code-block:: bash

    +----------------------------------------------+       +-------------------+
    |                                              |       |                   |
    |                      AP                      |       |                   |
    |                                              |  +--->|       SRAM        |
    +----------------------------------------------|  |    |                   |
    |              BL1 / BL2 / BL31                |  |    |                   |
    +----------------------------------------------+  |    +-------------------+
             |                           ^            |        ^           ^
             |  send                 IRQ | receive    |direct  |           |
             V                           |            |access  |           |
    +--------------------+    +--------------------+  |        |           |
    |      MHU sender    |    |    MHU receiver    |  |        | Copy data |
    +--------------------+    +--------------------+  |        |           |
       | |           | |          | |           | |   |        |           |
       | | channels  | |          | | channels  | |   |        |           |
       | | e.g: 4-16 | |          | | e.g: 4-16 | |   |        V           |
    +--------------------+    +--------------------+  |    +-------+       |
    |     MHU receiver   |    |     MHU sender     |  | +->|  DMA  |       |
    +--------------------+    +--------------------+  | |  +-------+       |
             |                           ^            | |      ^           |
        IRQ  |  receive                  | send       | |      | Copy data |
             V                           |            | |      V           V
    +----------------------------------------------+  | |  +-------------------+
    |                                              |--+-+  |                   |
    |                  RSE                         |       |      SRAM         |
    |                                              |       |                   |
    +----------------------------------------------+       +-------------------+

.. Note::

    The RSE communication layer is not prepared for concurrent execution. The
    current use case only requires message exchange during the boot phase. In
    the boot phase, only a single core is running and the rest of the cores are
    in reset.

Message structure
^^^^^^^^^^^^^^^^^
A description of the message format can be found in the ``RSE communication
design`` [2]_ document.

Source files
^^^^^^^^^^^^
- RSE comms:  ``drivers/arm/rse``
- MHU driver: ``drivers/arm/mhu``


API for communication over MHU
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The API is defined in these header files:

- ``include/drivers/arm/rse_comms.h``
- ``include/drivers/arm/mhu.h``

RSE provided runtime services
-----------------------------

RSE provides the following runtime services:

- ``Measured boot``: Securely store the firmware measurements which were
  computed during the boot process and the associated metadata (image
  description, measurement algorithm, etc.). More info on measured boot service
  in RSE can be found in the ``measured_boot_integration_guide`` [3]_ .
- ``Delegated attestation``: Query the platform attestation token and derive a
  delegated attestation key. More info on the delegated attestation service
  in RSE can be found in the ``delegated_attestation_integration_guide`` [4]_ .
- ``OTP assets management``: Public keys used by AP during the trusted boot
  process can be requested from RSE. Furthermore, AP can request RSE to
  increase a non-volatile counter. Please refer to the
  ``RSE key management`` [5]_ document for more details.
- ``DICE Protection Environment``: Securely store the firmware measurements
  which were computed during the boot process and the associated metadata. It is
  also capable of representing the boot measurements in the form of a
  certificate chain, which is queriable. Please refer to the
  ``DICE Protection Environment (DPE)`` [8]_ document for more details.

Runtime service API
^^^^^^^^^^^^^^^^^^^
The RSE provided runtime services implement a PSA aligned API. The parameter
encoding follows the PSA client protocol described in the
``Firmware Framework for M`` [6]_ document in chapter 4.4. The implementation is
restricted to the static handle use case therefore only the ``psa_call`` API is
implemented.


Software and API layers
^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: bash

    +----------------+         +---------------------+
    |   BL1 / BL2    |         |       BL31          |
    +----------------+         +---------------------+
      |                         |
      | extend_measurement()    | get_delegated_key()
      |                         | get_platform_token()
      V                         V
    +----------------+         +---------------------+
    |  PSA protocol  |         |    PSA protocol     |
    +----------------+         +---------------------+
         |                               |
         | psa_call()                    | psa_call()
         |                               |
         V                               V
    +------------------------------------------------+
    |         RSE communication protocol             |
    +------------------------------------------------+
         |                     ^
         | mhu_send_data()     | mhu_receive_data()
         |                     |
         V                     |
    +------------------------------------------------+
    |                 MHU driver                     |
    +------------------------------------------------+
               |                      ^
               | Register access      | IRQ
               V                      |
    +------------------------------------------------+
    |             MHU HW on AP side                  |
    +------------------------------------------------+
                         ^
                         | Physical wires
                         |
                         V
    +------------------------------------------------+
    |             MHU HW on RSE side                 |
    +------------------------------------------------+
             |                        ^
             | IRQ                    | Register access
             V                        |
    +------------------------------------------------+
    |                 MHU driver                     |
    +------------------------------------------------+
             |                        |
             V                        V
    +---------------+       +------------------------+
    | Measured boot |       | Delegated attestation  |
    | service       |       | service                |
    +---------------+       +------------------------+


RSE based Measured Boot
-----------------------

Measured Boot is the process of cryptographically measuring (computing the hash
value of a binary) the code and critical data used at boot time. The
measurement must be stored in a tamper-resistant way, so the security state
of the device can be attested later to an external party. RSE provides a runtime
service which is meant to store measurements and associated metadata alongside.

Data is stored in internal SRAM which is only accessible by the secure runtime
firmware of RSE. Data is stored in so-called measurement slots. A platform has
IMPDEF number of measurement slots. The measurement storage follows extend
semantics. This means that measurements are not stored directly (as it was
taken) instead they contribute to the current value of the measurement slot.
The extension implements this logic, where ``||`` stands for concatenation:

.. code-block:: bash

    new_value_of_measurement_slot = Hash(old_value_of_measurement_slot || measurement)

Supported hash algorithms: sha-256, sha-512

Measured Boot API
^^^^^^^^^^^^^^^^^

Defined here:

- ``include/lib/psa/measured_boot.h``

.. code-block:: c

    psa_status_t
    rse_measured_boot_extend_measurement(uint8_t        index,
                                         const uint8_t *signer_id,
                                         size_t         signer_id_size,
                                         const uint8_t *version,
                                         size_t         version_size,
                                         uint32_t       measurement_algo,
                                         const uint8_t *sw_type,
                                         size_t         sw_type_size,
                                         const uint8_t *measurement_value,
                                         size_t         measurement_value_size,
                                         bool           lock_measurement);

Measured Boot Metadata
^^^^^^^^^^^^^^^^^^^^^^

The following metadata can be stored alongside the measurement:

- ``Signer-id``: Mandatory. The hash of the firmware image signing public key.
- ``Measurement algorithm``: Optional. The hash algorithm which was used to
  compute the measurement (e.g.: sha-256, etc.).
- ``Version info``: Optional. The firmware version info (e.g.: 2.7).
- ``SW type``: Optional. Short text description (e.g.: BL1, BL2, BL31, etc.)

.. Note::
    Version info is not implemented in TF-A yet.


The caller must specify in which measurement slot to extend a certain
measurement and metadata. A measurement slot can be extended by multiple
measurements. The default value is IMPDEF. All measurement slot is cleared at
reset, there is no other way to clear them. In the reference implementation,
the measurement slots are initialized to 0. At the first call to extend the
measurement in a slot, the extend operation uses the default value of the
measurement slot. All upcoming extend operation on the same slot contributes
to the previous value of that measurement slot.

The following rules are kept when a slot is extended multiple times:

- ``Signer-id`` must be the same as the previous call(s), otherwise a
  PSA_ERROR_NOT_PERMITTED error code is returned.

- ``Measurement algorithm``: must be the same as the previous call(s),
  otherwise, a PSA_ERROR_NOT_PERMITTED error code is returned.

In case of error no further action is taken (slot is not locked). If there is
a valid data in a sub-sequent call then measurement slot will be extended. The
rest of the metadata is handled as follows when a measurement slot is extended
multiple times:

- ``SW type``: Cleared.
- ``Version info``: Cleared.

.. Note::

    Extending multiple measurements in the same slot leads to some metadata
    information loss. Since RSE is not constrained on special HW resources to
    store the measurements and metadata, therefore it is worth considering to
    store all of them one by one in distinct slots. However, they are one-by-one
    included in the platform attestation token. So, the number of distinct
    firmware image measurements has an impact on the size of the attestation
    token.

The allocation of the measurement slot among RSE, Root and Realm worlds is
platform dependent. The platform must provide an allocation of the measurement
slot at build time. An example can be found in
``tf-a/plat/arm/board/tc/tc_bl1_measured_boot.c``
Furthermore, the memory, which holds the metadata is also statically allocated
in RSE memory. Some of the fields have a static value (measurement algorithm),
and some of the values have a dynamic value (measurement value) which is updated
by the bootloaders when the firmware image is loaded and measured. The metadata
structure is defined in
``include/drivers/measured_boot/rse/rse_measured_boot.h``.

.. code-block:: c

    struct rse_mboot_metadata {
            unsigned int id;
            uint8_t slot;
            uint8_t signer_id[SIGNER_ID_MAX_SIZE];
            size_t  signer_id_size;
            uint8_t version[VERSION_MAX_SIZE];
            size_t  version_size;
            uint8_t sw_type[SW_TYPE_MAX_SIZE];
            size_t  sw_type_size;
            void    *pk_oid;
            bool    lock_measurement;
    };

Signer-ID API
^^^^^^^^^^^^^

This function calculates the hash of a public key (signer-ID) using the
``Measurement algorithm`` and stores it in the ``rse_mboot_metadata`` field
named ``signer_id``.
Prior to calling this function, the caller must ensure that the ``signer_id``
field points to the zero-filled buffer.

Defined here:

- ``include/drivers/measured_boot/rse/rse_measured_boot.h``

.. code-block:: c

   int rse_mboot_set_signer_id(struct rse_mboot_metadata *metadata_ptr,
                               const void *pk_oid,
                               const void *pk_ptr,
                               size_t pk_len)


- First parameter is the pointer to the ``rse_mboot_metadata`` structure.
- Second parameter is the pointer to the key-OID of the public key.
- Third parameter is the pointer to the public key buffer.
- Fourth parameter is the size of public key buffer.
- This function returns 0 on success, a signed integer error code
  otherwise.

Build time config options
^^^^^^^^^^^^^^^^^^^^^^^^^

- ``MEASURED_BOOT``: Enable measured boot.
- ``MBOOT_RSE_HASH_ALG``: Determine the hash algorithm to measure the images.
  The default value is sha-256.

Measured boot flow
^^^^^^^^^^^^^^^^^^

.. figure:: ../resources/diagrams/rse_measured_boot_flow.svg
  :align: center

Sample console log
^^^^^^^^^^^^^^^^^^

.. code-block:: bash

    INFO:    Measured boot extend measurement:
    INFO:     - slot        : 6
    INFO:     - signer_id   : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    INFO:                   : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    INFO:     - version     :
    INFO:     - version_size: 0
    INFO:     - sw_type     : FW_CONFIG
    INFO:     - sw_type_size: 10
    INFO:     - algorithm   : 2000009
    INFO:     - measurement : aa ea d3 a7 a8 e2 ab 7d 13 a6 cb 34 99 10 b9 a1
    INFO:                   : 1b 9f a0 52 c5 a8 b1 d7 76 f2 c1 c1 ef ca 1a df
    INFO:     - locking     : true
    INFO:    FCONF: Config file with image ID:31 loaded at address = 0x4001010
    INFO:    Loading image id=24 at address 0x4001300
    INFO:    Image id=24 loaded: 0x4001300 - 0x400153a
    INFO:    Measured boot extend measurement:
    INFO:     - slot        : 7
    INFO:     - signer_id   : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
    INFO:                   : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
    INFO:     - version     :
    INFO:     - version_size: 0
    INFO:     - sw_type     : TB_FW_CONFIG
    INFO:     - sw_type_size: 13
    INFO:     - algorithm   : 2000009
    INFO:     - measurement : 05 b9 dc 98 62 26 a7 1c 2d e5 bb af f0 90 52 28
    INFO:                   : f2 24 15 8a 3a 56 60 95 d6 51 3a 7a 1a 50 9b b7
    INFO:     - locking     : true
    INFO:    FCONF: Config file with image ID:24 loaded at address = 0x4001300
    INFO:    BL1: Loading BL2
    INFO:    Loading image id=1 at address 0x404d000
    INFO:    Image id=1 loaded: 0x404d000 - 0x406412a
    INFO:    Measured boot extend measurement:
    INFO:     - slot        : 8
    INFO:     - signer_id   : b0 f3 82 09 12 97 d8 3a 37 7a 72 47 1b ec 32 73
    INFO:                   : e9 92 32 e2 49 59 f6 5e 8b 4a 4a 46 d8 22 9a da
    INFO:     - version     :
    INFO:     - version_size: 0
    INFO:     - sw_type     : BL_2
    INFO:     - sw_type_size: 5
    INFO:     - algorithm   : 2000009
    INFO:     - measurement : 53 a1 51 75 25 90 fb a1 d9 b8 c8 34 32 3a 01 16
    INFO:                   : c9 9e 74 91 7d 28 02 56 3f 5c 40 94 37 58 50 68
    INFO:     - locking     : true

Delegated Attestation
---------------------

Delegated Attestation Service was mainly developed to support the attestation
flow on the ``ARM Confidential Compute Architecture`` (ARM CCA) [7]_.
The detailed description of the delegated attestation service can be found in
the ``Delegated Attestation Service Integration Guide`` [4]_ document.

In the CCA use case, the Realm Management Monitor (RMM) relies on the delegated
attestation service of the RSE to get a realm attestation key and the CCA
platform token. BL31 does not use the service for its own purpose, only calls
it on behalf of RMM. The access to MHU interface and thereby to RSE is
restricted to BL31 only. Therefore, RMM does not have direct access, all calls
need to go through BL31. The RMM dispatcher module of the BL31 is responsible
for delivering the calls between the two parties.

Delegated Attestation API
^^^^^^^^^^^^^^^^^^^^^^^^^
Defined here:

- ``include/lib/psa/delegated_attestation.h``

.. code-block:: c

    psa_status_t
    rse_delegated_attest_get_delegated_key(uint8_t   ecc_curve,
                                           uint32_t  key_bits,
                                           uint8_t  *key_buf,
                                           size_t    key_buf_size,
                                           size_t   *key_size,
                                           uint32_t  hash_algo);

    psa_status_t
    rse_delegated_attest_get_token(const uint8_t *dak_pub_hash,
                                   size_t         dak_pub_hash_size,
                                   uint8_t       *token_buf,
                                   size_t         token_buf_size,
                                   size_t        *token_size);

Attestation flow
^^^^^^^^^^^^^^^^

.. figure:: ../resources/diagrams/rse_attestation_flow.svg
  :align: center

Sample attestation token
^^^^^^^^^^^^^^^^^^^^^^^^

Binary format:

.. code-block:: bash

    INFO:    DELEGATED ATTEST TEST START
    INFO:    Get delegated attestation key start
    INFO:    Get delegated attest key succeeds, len: 48
    INFO:    Delegated attest key:
    INFO:            0d 2a 66 61 d4 89 17 e1 70 c6 73 56 df f4 11 fd
    INFO:            7d 1f 3b 8a a3 30 3d 70 4c d9 06 c3 c7 ef 29 43
    INFO:            0f ee b5 e7 56 e0 71 74 1b c4 39 39 fd 85 f6 7b
    INFO:    Get platform token start
    INFO:    Get platform token succeeds, len: 1086
    INFO:    Platform attestation token:
    INFO:            d2 84 44 a1 01 38 22 a0 59 05 81 a9 19 01 09 78
    INFO:            23 74 61 67 3a 61 72 6d 2e 63 6f 6d 2c 32 30 32
    INFO:            33 3a 63 63 61 5f 70 6c 61 74 66 6f 72 6d 23 31
    INFO:            2e 30 2e 30 0a 58 20 0d 22 e0 8a 98 46 90 58 48
    INFO:            63 18 28 34 89 bd b3 6f 09 db ef eb 18 64 df 43
    INFO:            3f a6 e5 4e a2 d7 11 19 09 5c 58 20 7f 45 4c 46
    INFO:            02 01 01 00 00 00 00 00 00 00 00 00 03 00 3e 00
    INFO:            01 00 00 00 50 58 00 00 00 00 00 00 19 01 00 58
    INFO:            21 01 07 06 05 04 03 02 01 00 0f 0e 0d 0c 0b 0a
    INFO:            09 08 17 16 15 14 13 12 11 10 1f 1e 1d 1c 1b 1a
    INFO:            19 18 19 09 61 44 cf cf cf cf 19 09 5b 19 30 03
    INFO:            19 09 62 67 73 68 61 2d 32 35 36 19 09 60 78 3a
    INFO:            68 74 74 70 73 3a 2f 2f 76 65 72 61 69 73 6f 6e
    INFO:            2e 65 78 61 6d 70 6c 65 2f 2e 77 65 6c 6c 2d 6b
    INFO:            6e 6f 77 6e 2f 76 65 72 61 69 73 6f 6e 2f 76 65
    INFO:            72 69 66 69 63 61 74 69 6f 6e 19 09 5f 8d a4 01
    INFO:            69 52 53 45 5f 42 4c 31 5f 32 05 58 20 53 78 79
    INFO:            63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
    INFO:            3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
    INFO:            9a 27 1f 2a 91 6b 0b 6e e6 ce cb 24 26 f0 b3 20
    INFO:            6e f0 74 57 8b e5 5d 9b c9 4f 6f 3f e3 ab 86 aa
    INFO:            06 67 73 68 61 2d 32 35 36 a4 01 67 52 53 45 5f
    INFO:            42 4c 32 05 58 20 53 78 79 63 07 53 5d f3 ec 8d
    INFO:            8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38
    INFO:            c0 fa 97 3f 7a a3 02 58 20 53 c2 34 e5 e8 47 2b
    INFO:            6a c5 1c 1a e1 ca b3 fe 06 fa d0 53 be b8 eb fd
    INFO:            89 77 b0 10 65 5b fd d3 c3 06 67 73 68 61 2d 32
    INFO:            35 36 a4 01 65 52 53 45 5f 53 05 58 20 53 78 79
    INFO:            63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
    INFO:            3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
    INFO:            11 21 cf cc d5 91 3f 0a 63 fe c4 0a 6f fd 44 ea
    INFO:            64 f9 dc 13 5c 66 63 4b a0 01 d1 0b cf 43 02 a2
    INFO:            06 67 73 68 61 2d 32 35 36 a4 01 66 41 50 5f 42
    INFO:            4c 31 05 58 20 53 78 79 63 07 53 5d f3 ec 8d 8b
    INFO:            15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 c0
    INFO:            fa 97 3f 7a a3 02 58 20 15 71 b5 ec 78 bd 68 51
    INFO:            2b f7 83 0b b6 a2 a4 4b 20 47 c7 df 57 bc e7 9e
    INFO:            b8 a1 c0 e5 be a0 a5 01 06 67 73 68 61 2d 32 35
    INFO:            36 a4 01 66 41 50 5f 42 4c 32 05 58 20 53 78 79
    INFO:            63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
    INFO:            3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
    INFO:            10 15 9b af 26 2b 43 a9 2d 95 db 59 da e1 f7 2c
    INFO:            64 51 27 30 16 61 e0 a3 ce 4e 38 b2 95 a9 7c 58
    INFO:            06 67 73 68 61 2d 32 35 36 a4 01 67 53 43 50 5f
    INFO:            42 4c 31 05 58 20 53 78 79 63 07 53 5d f3 ec 8d
    INFO:            8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38
    INFO:            c0 fa 97 3f 7a a3 02 58 20 10 12 2e 85 6b 3f cd
    INFO:            49 f0 63 63 63 17 47 61 49 cb 73 0a 1a a1 cf aa
    INFO:            d8 18 55 2b 72 f5 6d 6f 68 06 67 73 68 61 2d 32
    INFO:            35 36 a4 01 67 53 43 50 5f 42 4c 32 05 58 20 f1
    INFO:            4b 49 87 90 4b cb 58 14 e4 45 9a 05 7e d4 d2 0f
    INFO:            58 a6 33 15 22 88 a7 61 21 4d cd 28 78 0b 56 02
    INFO:            58 20 aa 67 a1 69 b0 bb a2 17 aa 0a a8 8a 65 34
    INFO:            69 20 c8 4c 42 44 7c 36 ba 5f 7e a6 5f 42 2c 1f
    INFO:            e5 d8 06 67 73 68 61 2d 32 35 36 a4 01 67 41 50
    INFO:            5f 42 4c 33 31 05 58 20 53 78 79 63 07 53 5d f3
    INFO:            ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3
    INFO:            22 38 c0 fa 97 3f 7a a3 02 58 20 2e 6d 31 a5 98
    INFO:            3a 91 25 1b fa e5 ae fa 1c 0a 19 d8 ba 3c f6 01
    INFO:            d0 e8 a7 06 b4 cf a9 66 1a 6b 8a 06 67 73 68 61
    INFO:            2d 32 35 36 a4 01 63 52 4d 4d 05 58 20 53 78 79
    INFO:            63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56 41 41 9c
    INFO:            3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3 02 58 20
    INFO:            a1 fb 50 e6 c8 6f ae 16 79 ef 33 51 29 6f d6 71
    INFO:            34 11 a0 8c f8 dd 17 90 a4 fd 05 fa e8 68 81 64
    INFO:            06 67 73 68 61 2d 32 35 36 a4 01 69 48 57 5f 43
    INFO:            4f 4e 46 49 47 05 58 20 53 78 79 63 07 53 5d f3
    INFO:            ec 8d 8b 15 a2 e2 dc 56 41 41 9c 3d 30 60 cf e3
    INFO:            22 38 c0 fa 97 3f 7a a3 02 58 20 1a 25 24 02 97
    INFO:            2f 60 57 fa 53 cc 17 2b 52 b9 ff ca 69 8e 18 31
    INFO:            1f ac d0 f3 b0 6e ca ae f7 9e 17 06 67 73 68 61
    INFO:            2d 32 35 36 a4 01 69 46 57 5f 43 4f 4e 46 49 47
    INFO:            05 58 20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2
    INFO:            e2 dc 56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97
    INFO:            3f 7a a3 02 58 20 9a 92 ad bc 0c ee 38 ef 65 8c
    INFO:            71 ce 1b 1b f8 c6 56 68 f1 66 bf b2 13 64 4c 89
    INFO:            5c cb 1a d0 7a 25 06 67 73 68 61 2d 32 35 36 a4
    INFO:            01 6c 54 42 5f 46 57 5f 43 4f 4e 46 49 47 05 58
    INFO:            20 53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc
    INFO:            56 41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a
    INFO:            a3 02 58 20 23 89 03 18 0c c1 04 ec 2c 5d 8b 3f
    INFO:            20 c5 bc 61 b3 89 ec 0a 96 7d f8 cc 20 8c dc 7c
    INFO:            d4 54 17 4f 06 67 73 68 61 2d 32 35 36 a4 01 6d
    INFO:            53 4f 43 5f 46 57 5f 43 4f 4e 46 49 47 05 58 20
    INFO:            53 78 79 63 07 53 5d f3 ec 8d 8b 15 a2 e2 dc 56
    INFO:            41 41 9c 3d 30 60 cf e3 22 38 c0 fa 97 3f 7a a3
    INFO:            02 58 20 e6 c2 1e 8d 26 0f e7 18 82 de bd b3 39
    INFO:            d2 40 2a 2c a7 64 85 29 bc 23 03 f4 86 49 bc e0
    INFO:            38 00 17 06 67 73 68 61 2d 32 35 36 58 60 31 d0
    INFO:            4d 52 cc de 95 2c 1e 32 cb a1 81 88 5a 40 b8 cc
    INFO:            38 e0 52 8c 1e 89 58 98 07 64 2a a5 e3 f2 bc 37
    INFO:            f9 53 74 50 6b ff 4d 2e 4b e7 06 3c 4d 72 41 92
    INFO:            70 c7 22 e8 d4 d9 3e e8 b6 c9 fa ce 3b 43 c9 76
    INFO:            1a 49 94 1a b6 f3 8f fd ff 49 6a d4 63 b4 cb fa
    INFO:            11 d8 3e 23 e3 1f 7f 62 32 9d e3 0c 1c c8
    INFO:    DELEGATED ATTEST TEST END

JSON format:

.. code-block:: JSON

    {
        "CCA_ATTESTATION_PROFILE": "tag:arm.com,2023:cca_platform#1.0.0",
        "CCA_PLATFORM_CHALLENGE": "b'0D22E08A98469058486318283489BDB36F09DBEFEB1864DF433FA6E54EA2D711'",
        "CCA_PLATFORM_IMPLEMENTATION_ID": "b'7F454C4602010100000000000000000003003E00010000005058000000000000'",
        "CCA_PLATFORM_INSTANCE_ID": "b'0107060504030201000F0E0D0C0B0A090817161514131211101F1E1D1C1B1A1918'",
        "CCA_PLATFORM_CONFIG": "b'CFCFCFCF'",
        "CCA_PLATFORM_LIFECYCLE": "secured_3003",
        "CCA_PLATFORM_HASH_ALGO_ID": "sha-256",
        "CCA_PLATFORM_VERIFICATION_SERVICE": "https://veraison.example/.well-known/veraison/verification",
        "CCA_PLATFORM_SW_COMPONENTS": [
            {
                "SW_COMPONENT_TYPE": "RSE_BL1_2",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'9A271F2A916B0B6EE6CECB2426F0B3206EF074578BE55D9BC94F6F3FE3AB86AA'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "RSE_BL2",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'53C234E5E8472B6AC51C1AE1CAB3FE06FAD053BEB8EBFD8977B010655BFDD3C3'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "RSE_S",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'1121CFCCD5913F0A63FEC40A6FFD44EA64F9DC135C66634BA001D10BCF4302A2'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "AP_BL1",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'1571B5EC78BD68512BF7830BB6A2A44B2047C7DF57BCE79EB8A1C0E5BEA0A501'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "AP_BL2",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'10159BAF262B43A92D95DB59DAE1F72C645127301661E0A3CE4E38B295A97C58'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "SCP_BL1",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'10122E856B3FCD49F063636317476149CB730A1AA1CFAAD818552B72F56D6F68'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "SCP_BL2",
                "SIGNER_ID": "b'F14B4987904BCB5814E4459A057ED4D20F58A633152288A761214DCD28780B56'",
                "MEASUREMENT_VALUE": "b'AA67A169B0BBA217AA0AA88A65346920C84C42447C36BA5F7EA65F422C1FE5D8'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "AP_BL31",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'2E6D31A5983A91251BFAE5AEFA1C0A19D8BA3CF601D0E8A706B4CFA9661A6B8A'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "RMM",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'A1FB50E6C86FAE1679EF3351296FD6713411A08CF8DD1790A4FD05FAE8688164'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "HW_CONFIG",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'1A252402972F6057FA53CC172B52B9FFCA698E18311FACD0F3B06ECAAEF79E17'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "FW_CONFIG",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'9A92ADBC0CEE38EF658C71CE1B1BF8C65668F166BFB213644C895CCB1AD07A25'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "TB_FW_CONFIG",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'238903180CC104EC2C5D8B3F20C5BC61B389EC0A967DF8CC208CDC7CD454174F'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            },
            {
                "SW_COMPONENT_TYPE": "SOC_FW_CONFIG",
                "SIGNER_ID": "b'5378796307535DF3EC8D8B15A2E2DC5641419C3D3060CFE32238C0FA973F7AA3'",
                "MEASUREMENT_VALUE": "b'E6C21E8D260FE71882DEBDB339D2402A2CA7648529BC2303F48649BCE0380017'",
                "CCA_SW_COMPONENT_HASH_ID": "sha-256"
            }
        ]
    }

RSE based DICE Protection Environment
-------------------------------------

The ``DICE Protection Environment (DPE)`` [8]_ service makes it possible to
execute |DICE| commands within an isolated execution environment. It provides
clients with an interface to send DICE commands, encoded as CBOR objects,
that act on opaque context handles. The |DPE| service performs |DICE|
derivations and certification on its internal contexts, without exposing the
|DICE| secrets (private keys and CDIs) outside of the isolated execution
environment.

|DPE| API
^^^^^^^^^

Defined here:

- ``include/lib/psa/dice_protection_environment.h``

.. code-block:: c

    dpe_error_t
    dpe_derive_context(int      context_handle,
                       uint32_t cert_id,
                       bool     retain_parent_context,
                       bool     allow_new_context_to_derive,
                       bool     create_certificate,
                       const DiceInputValues *dice_inputs,
                       int32_t  target_locality,
                       bool     return_certificate,
                       bool     allow_new_context_to_export,
                       bool     export_cdi,
                       int     *new_context_handle,
                       int     *new_parent_context_handle,
                       uint8_t *new_certificate_buf,
                       size_t   new_certificate_buf_size,
                       size_t  *new_certificate_actual_size,
                       uint8_t *exported_cdi_buf,
                       size_t   exported_cdi_buf_size,
                       size_t  *exported_cdi_actual_size);

Build time config options
^^^^^^^^^^^^^^^^^^^^^^^^^

- ``MEASURED_BOOT``: Enable measured boot.
- ``DICE_PROTECTION_ENVIRONMENT``: Boolean flag to specify the measured boot
  backend when |RSE| based ``MEASURED_BOOT`` is enabled. The default value is
  ``0``. When set to ``1`` then measurements and additional metadata collected
  during the measured boot process are sent to the |DPE| for storage and
  processing.
- ``DPE_ALG_ID``: Determine the hash algorithm to measure the images. The
  default value is sha-256.

Example certificate chain
^^^^^^^^^^^^^^^^^^^^^^^^^

``plat/arm/board/tc/tc_dpe.h``

RSE OTP Assets Management
-------------------------

RSE provides access for AP to assets in OTP, which include keys for image
signature verification and non-volatile counters for anti-rollback protection.

Non-Volatile Counter API
^^^^^^^^^^^^^^^^^^^^^^^^

AP/RSE interface for retrieving and incrementing non-volatile counters API is
as follows.

Defined here:

- ``include/lib/psa/rse_platform_api.h``

.. code-block:: c

    psa_status_t rse_platform_nv_counter_increment(uint32_t counter_id)

    psa_status_t rse_platform_nv_counter_read(uint32_t counter_id,
            uint32_t size, uint8_t *val)

Through this service, we can read/increment any of the 3 non-volatile
counters used on an Arm CCA platform:

- ``Non-volatile counter for CCA firmware (BL2, BL31, RMM).``
- ``Non-volatile counter for secure firmware.``
- ``Non-volatile counter for non-secure firmware.``

Public Key API
^^^^^^^^^^^^^^

AP/RSE interface for reading the ROTPK is as follows.

Defined here:

- ``include/lib/psa/rse_platform_api.h``

.. code-block:: c

    psa_status_t rse_platform_key_read(enum rse_key_id_builtin_t key,
            uint8_t *data, size_t data_size, size_t *data_length)

Through this service, we can read any of the 3 ROTPKs used on an
Arm CCA platform:

- ``ROTPK for CCA firmware (BL2, BL31, RMM).``
- ``ROTPK for secure firmware.``
- ``ROTPK for non-secure firmware.``

References
----------

.. [1] https://trustedfirmware-m.readthedocs.io/en/latest/platform/arm/rse/index.html
.. [2] https://trustedfirmware-m.readthedocs.io/en/latest/platform/arm/rse/rse_comms.html
.. [3] https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/measured_boot_integration_guide.html
.. [4] https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/delegated_attestation/delegated_attest_integration_guide.html
.. [5] https://trustedfirmware-m.readthedocs.io/en/latest/platform/arm/rse/rse_key_management.html
.. [6] https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0063-PSA_Firmware_Framework-1.0.0-2.pdf?revision=2d1429fa-4b5b-461a-a60e-4ef3d8f7f4b4&hash=3BFD6F3E687F324672F18E5BE9F08EDC48087C93
.. [7] https://developer.arm.com/documentation/DEN0096/A_a/?lang=en
.. [8] https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/dice_protection_environment/dice_protection_environment.html

--------------

*Copyright (c) 2023-2024, Arm Limited. All rights reserved.*
*Copyright (c) 2024, Linaro Limited. All rights reserved.*