1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
PSCI Performance Measurements on Arm Juno Development Platform
==============================================================
This document summarises the findings of performance measurements of key
operations in the Trusted Firmware-A Power State Coordination Interface (PSCI)
implementation, using the in-built Performance Measurement Framework (PMF) and
runtime instrumentation timestamps.
Method
------
We used the `Juno R1 platform`_ for these tests, which has 4 x Cortex-A53 and 2
x Cortex-A57 clusters running at the following frequencies:
+-----------------+--------------------+
| Domain | Frequency (MHz) |
+=================+====================+
| Cortex-A57 | 900 (nominal) |
+-----------------+--------------------+
| Cortex-A53 | 650 (underdrive) |
+-----------------+--------------------+
| AXI subsystem | 533 |
+-----------------+--------------------+
Juno supports CPU, cluster and system power down states, corresponding to power
levels 0, 1 and 2 respectively. It does not support any retention states.
Given that runtime instrumentation using PMF is invasive, there is a small
(unquantified) overhead on the results. PMF uses the generic counter for
timestamps, which runs at 50MHz on Juno.
The following source trees and binaries were used:
- `TF-A v2.12-rc0`_
- `TFTF v2.12-rc0`_
Please see the Runtime Instrumentation :ref:`Testing Methodology
<Runtime Instrumentation Methodology>`
page for more details.
Procedure
---------
#. Build TFTF with runtime instrumentation enabled:
.. code:: shell
make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
TESTS=runtime-instrumentation all
#. Fetch Juno's SCP binary from TF-A's archive:
.. code:: shell
curl --fail --connect-timeout 5 --retry 5 -sLS -o scp_bl2.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/juno/release/juno-bl2.bin
#. Build TF-A with the following build options:
.. code:: shell
make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
BL33="/path/to/tftf.bin" SCP_BL2="scp_bl2.bin" \
ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all fip
#. Load the following images onto the development board: ``fip.bin``,
``scp_bl2.bin``.
Results
-------
``CPU_SUSPEND`` to deepest power level
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
parallel (v2.12)
+---------+------+-------------------+------------------+--------------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-------------------+------------------+--------------------+
| 0 | 0 | 244.52 (-65.43%) | 26.92 (-32.60%) | 5.54 (-96.70%) |
+---------+------+-------------------+------------------+--------------------+
| 0 | 1 | 526.18 (+105.12%) | 416.1 | 138.52 (+2011.59%) |
+---------+------+-------------------+------------------+--------------------+
| 1 | 0 | 104.34 | 27.02 (-94.62%) | 5.32 |
+---------+------+-------------------+------------------+--------------------+
| 1 | 1 | 384.98 | 23.06 (-85.40%) | 4.48 |
+---------+------+-------------------+------------------+--------------------+
| 1 | 2 | 812.44 (+45.94%) | 126.78 | 4.54 |
+---------+------+-------------------+------------------+--------------------+
| 1 | 3 | 986.84 | 77.22 (+176.58%) | 79.76 |
+---------+------+-------------------+------------------+--------------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
parallel (v2.11)
+---------+------+-------------------+--------------------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-------------------+--------------------+-------------+
| 0 | 0 | 112.98 (-53.44%) | 26.16 (-89.33%) | 5.48 |
+---------+------+-------------------+--------------------+-------------+
| 0 | 1 | 411.18 | 438.88 (+1572.56%) | 138.54 |
+---------+------+-------------------+--------------------+-------------+
| 1 | 0 | 261.82 (+150.88%) | 474.06 (+1649.30%) | 5.6 |
+---------+------+-------------------+--------------------+-------------+
| 1 | 1 | 714.76 (+86.84%) | 26.44 | 4.48 |
+---------+------+-------------------+--------------------+-------------+
| 1 | 2 | 862.66 | 149.34 (-45.00%) | 4.38 |
+---------+------+-------------------+--------------------+-------------+
| 1 | 3 | 1045.12 | 98.12 (-55.76%) | 79.74 |
+---------+------+-------------------+--------------------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
serial (v2.12)
+---------+------+-----------+-----------------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+-----------------+-------------+
| 0 | 0 | 236.36 | 27.94 (-31.52%) | 138.0 |
+---------+------+-----------+-----------------+-------------+
| 0 | 1 | 236.58 | 27.86 (-31.72%) | 138.2 |
+---------+------+-----------+-----------------+-------------+
| 1 | 0 | 280.68 | 27.02 | 77.6 |
+---------+------+-----------+-----------------+-------------+
| 1 | 1 | 101.4 | 22.52 | 4.42 |
+---------+------+-----------+-----------------+-------------+
| 1 | 2 | 100.92 | 22.68 | 4.4 |
+---------+------+-----------+-----------------+-------------+
| 1 | 3 | 100.96 | 22.54 | 4.38 |
+---------+------+-----------+-----------------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
serial (v2.11)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 244.42 | 27.42 | 138.12 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 245.02 | 27.34 | 138.08 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 297.66 | 26.2 | 77.68 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 108.02 | 21.94 | 4.52 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 107.48 | 21.88 | 4.46 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 107.52 | 21.86 | 4.46 |
+---------+------+-----------+--------+-------------+
``CPU_SUSPEND`` to power level 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in
parallel (v2.12)
+--------------------------------------------------------------------+
| test_rt_instr_cpu_susp_parallel |
+---------+------+-------------------+-----------------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-------------------+-----------------+-------------+
| 0 | 0 | 663.12 | 19.66 (-39.21%) | 8.26 |
+---------+------+-------------------+-----------------+-------------+
| 0 | 1 | 804.18 | 19.24 (-40.65%) | 8.1 |
+---------+------+-------------------+-----------------+-------------+
| 1 | 0 | 105.58 (-58.80%) | 19.68 | 7.42 |
+---------+------+-------------------+-----------------+-------------+
| 1 | 1 | 245.02 (-39.67%) | 19.8 | 6.82 |
+---------+------+-------------------+-----------------+-------------+
| 1 | 2 | 383.82 (-30.83%) | 18.84 | 7.06 |
+---------+------+-------------------+-----------------+-------------+
| 1 | 3 | 523.36 (+391.23%) | 19.0 | 7.3 |
+---------+------+-------------------+-----------------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in
parallel (v2.11)
+---------+------+-------------------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-------------------+--------+-------------+
| 0 | 0 | 704.46 | 19.28 | 7.86 |
+---------+------+-------------------+--------+-------------+
| 0 | 1 | 853.66 | 18.78 | 7.82 |
+---------+------+-------------------+--------+-------------+
| 1 | 0 | 556.52 (+425.51%) | 19.06 | 7.82 |
+---------+------+-------------------+--------+-------------+
| 1 | 1 | 113.28 (-70.47%) | 19.28 | 7.48 |
+---------+------+-------------------+--------+-------------+
| 1 | 2 | 260.62 (-50.22%) | 19.8 | 7.26 |
+---------+------+-------------------+--------+-------------+
| 1 | 3 | 408.16 (+66.94%) | 19.82 | 7.38 |
+---------+------+-------------------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial (v2.12)
+---------+------+-----------+-----------------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+-----------------+-------------+
| 0 | 0 | 100.04 | 20.32 (-38.50%) | 5.62 |
+---------+------+-----------+-----------------+-------------+
| 0 | 1 | 99.78 | 20.6 (-36.10%) | 5.42 |
+---------+------+-----------+-----------------+-------------+
| 1 | 0 | 278.28 | 19.52 | 4.32 |
+---------+------+-----------+-----------------+-------------+
| 1 | 1 | 97.3 | 19.44 | 4.26 |
+---------+------+-----------+-----------------+-------------+
| 1 | 2 | 97.56 | 19.52 | 4.32 |
+---------+------+-----------+-----------------+-------------+
| 1 | 3 | 97.52 | 19.46 | 4.26 |
+---------+------+-----------+-----------------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial (v2.11)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 106.78 | 19.2 | 5.32 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 107.44 | 19.64 | 5.44 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 295.82 | 19.14 | 4.34 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 104.34 | 19.18 | 4.28 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 103.96 | 19.34 | 4.4 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 104.32 | 19.18 | 4.34 |
+---------+------+-----------+--------+-------------+
``CPU_OFF`` on all non-lead CPUs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``CPU_OFF`` on all non-lead CPUs in sequence then, ``CPU_SUSPEND`` on the lead
core to the deepest power level.
.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs (v2.12)
+---------+------+-----------+-----------------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+-----------------+-------------+
| 0 | 0 | 236.3 | 30.88 (-29.30%) | 137.76 |
+---------+------+-----------+-----------------+-------------+
| 0 | 1 | 236.66 | 30.5 (-29.23%) | 138.02 |
+---------+------+-----------+-----------------+-------------+
| 1 | 0 | 175.9 | 27.0 | 77.86 |
+---------+------+-----------+-----------------+-------------+
| 1 | 1 | 100.96 | 27.56 | 4.26 |
+---------+------+-----------+-----------------+-------------+
| 1 | 2 | 101.04 | 26.48 | 4.38 |
+---------+------+-----------+-----------------+-------------+
| 1 | 3 | 101.08 | 26.74 | 4.4 |
+---------+------+-----------+-----------------+-------------+
.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs (v2.11)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 243.62 | 29.84 | 137.66 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 243.88 | 29.54 | 137.8 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 183.26 | 26.22 | 77.76 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 107.64 | 26.74 | 4.34 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 107.52 | 25.9 | 4.32 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 107.74 | 25.8 | 4.34 |
+---------+------+-----------+--------+-------------+
``CPU_VERSION`` in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores (2.12)
+-------------+--------+--------------+
| Cluster | Core | Latency |
+-------------+--------+--------------+
| 0 | 0 | 1.0 |
+-------------+--------+--------------+
| 0 | 1 | 1.02 |
+-------------+--------+--------------+
| 1 | 0 | 0.52 |
+-------------+--------+--------------+
| 1 | 1 | 0.94 |
+-------------+--------+--------------+
| 1 | 2 | 0.94 |
+-------------+--------+--------------+
| 1 | 3 | 0.92 |
+-------------+--------+--------------+
.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores (2.11)
+-------------+--------+--------------+
| Cluster | Core | Latency |
+-------------+--------+--------------+
| 0 | 0 | 1.26 |
+-------------+--------+--------------+
| 0 | 1 | 0.96 |
+-------------+--------+--------------+
| 1 | 0 | 0.54 |
+-------------+--------+--------------+
| 1 | 1 | 0.94 |
+-------------+--------+--------------+
| 1 | 2 | 0.92 |
+-------------+--------+--------------+
| 1 | 3 | 1.02 |
+-------------+--------+--------------+
Annotated Historic Results
--------------------------
The following results are based on the upstream `TF master as of 31/01/2017`_.
TF-A was built using the same build instructions as detailed in the procedure
above.
In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and
CPUs 4-5 refer to CPUs in the big cluster (A57). In all cases CPU 4 is the lead
CPU.
``PSCI_ENTRY`` corresponds to the powerdown latency, ``PSCI_EXIT`` the wakeup latency, and
``CFLUSH_OVERHEAD`` the latency of the cache flush operation.
``CPU_SUSPEND`` to deepest power level on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 27 | 20 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 114 | 86 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 202 | 58 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 375 | 29 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 20 | 22 | 6 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 290 | 18 | 206 |
+-------+---------------------+--------------------+--------------------------+
A large variance in ``PSCI_ENTRY`` and ``PSCI_EXIT`` times across CPUs is
observed due to TF PSCI lock contention. In the worst case, CPU 3 has to wait
for the 3 other CPUs in the cluster (0-2) to complete ``PSCI_ENTRY`` and release
the lock before proceeding.
The ``CFLUSH_OVERHEAD`` times for CPUs 3 and 5 are higher because they are the
last CPUs in their respective clusters to power down, therefore both the L1 and
L2 caches are flushed.
The ``CFLUSH_OVERHEAD`` time for CPU 5 is a lot larger than that for CPU 3
because the L2 cache size for the big cluster is lot larger (2MB) compared to
the little cluster (1MB).
``CPU_SUSPEND`` to power level 0 on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 116 | 14 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 204 | 14 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 287 | 13 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 376 | 13 | 9 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 29 | 15 | 7 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 21 | 15 | 8 |
+-------+---------------------+--------------------+--------------------------+
There is no lock contention in TF generic code at power level 0 but the large
variance in ``PSCI_ENTRY`` times across CPUs is due to lock contention in Juno
platform code. The platform lock is used to mediate access to a single SCP
communication channel. This is compounded by the SCP firmware waiting for each
AP CPU to enter WFI before making the channel available to other CPUs, which
effectively serializes the SCP power down commands from all CPUs.
On platforms with a more efficient CPU power down mechanism, it should be
possible to make the ``PSCI_ENTRY`` times smaller and consistent.
The ``PSCI_EXIT`` times are consistent across all CPUs because TF does not
require locks at power level 0.
The ``CFLUSH_OVERHEAD`` times for all CPUs are small and consistent since only
the cache associated with power level 0 is flushed (L1).
``CPU_SUSPEND`` to deepest power level on all CPUs in sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 195 | 22 | 180 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 21 | 17 | 6 |
+-------+---------------------+--------------------+--------------------------+
The ``CFLUSH_OVERHEAD`` times for lead CPU 4 and all CPUs in the non-lead cluster
are large because all other CPUs in the cluster are powered down during the
test. The ``CPU_SUSPEND`` call powers down to the cluster level, requiring a
flush of both L1 and L2 caches.
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
to the little cluster (1MB).
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are low because lead
CPU 4 continues to run while CPU 5 is suspended. Hence CPU 5 only powers down to
level 0, which only requires L1 cache flush.
``CPU_SUSPEND`` to power level 0 on all CPUs in sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 21 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 17 | 14 | 6 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 18 | 15 | 6 |
+-------+---------------------+--------------------+--------------------------+
Here the times are small and consistent since there is no contention and it is
only necessary to flush the cache to power level 0 (L1). This is the best case
scenario.
The ``PSCI_ENTRY`` times for CPUs in the big cluster are slightly smaller than
for the CPUs in little cluster due to greater CPU performance.
The ``PSCI_EXIT`` times are generally lower than in the last test because the
cluster remains powered on throughout the test and there is less code to execute
on power on (for example, no need to enter CCI coherency)
``CPU_OFF`` on all non-lead CPUs in sequence then ``CPU_SUSPEND`` on lead CPU to deepest power level
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The test sequence here is as follows:
1. Call ``CPU_ON`` and ``CPU_OFF`` on each non-lead CPU in sequence.
2. Program wake up timer and suspend the lead CPU to the deepest power level.
3. Call ``CPU_ON`` on non-lead CPU to get the timestamps from each CPU.
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 111 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 195 | 22 | 181 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 20 | 23 | 6 |
+-------+---------------------+--------------------+--------------------------+
The ``CFLUSH_OVERHEAD`` times for all little CPUs are large because all other
CPUs in that cluster are powerered down during the test. The ``CPU_OFF`` call
powers down to the cluster level, requiring a flush of both L1 and L2 caches.
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are small because
lead CPU 4 is running and CPU 5 only powers down to level 0, which only requires
an L1 cache flush.
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
to the little cluster (1MB).
The ``PSCI_EXIT`` times for CPUs in the big cluster are slightly smaller than
for CPUs in the little cluster due to greater CPU performance. These times
generally are greater than the ``PSCI_EXIT`` times in the ``CPU_SUSPEND`` tests
because there is more code to execute in the "on finisher" compared to the
"suspend finisher" (for example, GIC redistributor register programming).
``PSCI_VERSION`` on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since very little code is associated with ``PSCI_VERSION``, this test
approximates the round trip latency for handling a fast SMC at EL3 in TF.
+-------+-------------------+
| CPU | TOTAL TIME (ns) |
+=======+===================+
| 0 | 3020 |
+-------+-------------------+
| 1 | 2940 |
+-------+-------------------+
| 2 | 2980 |
+-------+-------------------+
| 3 | 3060 |
+-------+-------------------+
| 4 | 520 |
+-------+-------------------+
| 5 | 720 |
+-------+-------------------+
The times for the big CPUs are less than the little CPUs due to greater CPU
performance.
We suspect the time for lead CPU 4 is shorter than CPU 5 due to subtle cache
effects, given that these measurements are at the nano-second level.
--------------
*Copyright (c) 2019-2024, Arm Limited and Contributors. All rights reserved.*
.. _Juno R1 platform: https://developer.arm.com/documentation/100122/latest/
.. _TF master as of 31/01/2017: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d
.. _TF-A v2.12-rc0: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.12-rc0
.. _TFTF v2.12-rc0: https://git.trustedfirmware.org/TF-A/tf-a-tests.git/tree/?h=v2.12-rc0
|