1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
|
Generic Threat Model
********************
************
Introduction
************
This document provides a generic threat model for TF-A firmware.
.. _Target of Evaluation:
********************
Target of Evaluation
********************
In this threat model, the target of evaluation is the Trusted
Firmware for A-class Processors (TF-A). This includes the boot ROM (BL1),
the trusted boot firmware (BL2) and the runtime EL3 firmware (BL31) as
shown on Figure 1. Everything else on Figure 1 is outside of the scope of
the evaluation.
TF-A can be configured in various ways. In this threat model we consider
only the most basic configuration. To that end we make the following
assumptions:
- All TF-A images are run from either ROM or on-chip trusted SRAM. This means
TF-A is not vulnerable to an attacker that can probe or tamper with off-chip
memory.
- Trusted boot is enabled. This means an attacker can't boot arbitrary images
that are not approved by platform providers.
- There is no Secure-EL2. We don't consider threats that may come with
Secure-EL2 software.
- There are no Root and Realm worlds. These are introduced by :ref:`Realm
Management Extension (RME)`.
The :ref:`Threat Model for TF-A with Arm CCA support` covers these types of
configurations.
- No experimental features are enabled. We do not consider threats that may come
from them.
- The platform's hardware complies with the `PSR specification`_, defining the
bare-minimum security prerequisites for System-on-Chips (SoC).
Data Flow Diagram
=================
Figure 1 shows a high-level data flow diagram for TF-A. The diagram
shows a model of the different components of a TF-A-based system and
their interactions with TF-A. A description of each diagram element
is given on Table 1. On the diagram, the red broken lines indicate
trust boundaries. Components outside of the broken lines
are considered untrusted by TF-A.
.. uml:: ../../resources/diagrams/plantuml/tfa_dfd.puml
:caption: Figure 1: TF-A Data Flow Diagram
.. table:: Table 1: TF-A Data Flow Diagram Description
+-----------------+--------------------------------------------------------+
| Diagram Element | Description |
+=================+========================================================+
| DF1 | | At boot time, images are loaded from non-volatile |
| | memory and verified by TF-A boot firmware. These |
| | images include TF-A BL2 and BL31 images, as well as |
| | other secure and non-secure images. |
+-----------------+--------------------------------------------------------+
| DF2 | | TF-A log system framework outputs debug or |
| | informative messages over a UART interface. |
| | |
| | | Also, characters can be read from a UART interface. |
+-----------------+--------------------------------------------------------+
| DF3 | | Debug and trace IP on a platform can allow access |
| | to registers and memory of TF-A. |
+-----------------+--------------------------------------------------------+
| DF4 | | Secure world software (e.g. trusted OS) interact |
| | with TF-A through SMC call interface and/or shared |
| | memory. |
+-----------------+--------------------------------------------------------+
| DF5 | | Non-secure world software (e.g. rich OS) interact |
| | with TF-A through SMC call interface and/or shared |
| | memory. |
+-----------------+--------------------------------------------------------+
| DF6 | | This path represents the interaction between TF-A and|
| | various hardware IPs such as TrustZone controller |
| | and GIC. At boot time TF-A configures/initializes the|
| | IPs and interacts with them at runtime through |
| | interrupts and registers. |
+-----------------+--------------------------------------------------------+
.. _threat_analysis:
***************
Threat Analysis
***************
In this section we identify and provide assessment of potential threats to TF-A
firmware. The threats are identified for each diagram element on the
data flow diagram above.
For each threat, we identify the *asset* that is under threat, the
*threat agent* and the *threat type*. Each threat is given a *risk rating*
that represents the impact and likelihood of that threat. We also discuss
potential mitigations.
Assets
======
We have identified the following assets for TF-A:
.. table:: Table 2: TF-A Assets
+--------------------+---------------------------------------------------+
| Asset | Description |
+====================+===================================================+
| Sensitive Data | | These include sensitive data that an attacker |
| | must not be able to tamper with (e.g. the Root |
| | of Trust Public Key) or see (e.g. secure logs, |
| | debugging information such as crash reports). |
+--------------------+---------------------------------------------------+
| Code Execution | | This represents the requirement that the |
| | platform should run only TF-A code approved by |
| | the platform provider. |
+--------------------+---------------------------------------------------+
| Availability | | This represents the requirement that TF-A |
| | services should always be available for use. |
+--------------------+---------------------------------------------------+
Threat Agents
=============
To understand the attack surface, it is important to identify potential
attackers, i.e. attack entry points. The following threat agents are
in scope of this threat model.
.. table:: Table 3: Threat Agents
+-------------------+-------------------------------------------------------+
| Threat Agent | Description |
+===================+=======================================================+
| NSCode | | Malicious or faulty code running in the Non-secure |
| | world, including NS-EL0 NS-EL1 and NS-EL2 levels |
+-------------------+-------------------------------------------------------+
| SecCode | | Malicious or faulty code running in the secure |
| | world, including S-EL0 and S-EL1 levels |
+-------------------+-------------------------------------------------------+
| AppDebug | | Physical attacker using debug signals to access |
| | TF-A resources |
+-------------------+-------------------------------------------------------+
| PhysicalAccess | | Physical attacker having access to external device |
| | communication bus and to external flash |
| | communication bus using common hardware |
+-------------------+-------------------------------------------------------+
.. note::
In this threat model an advanced physical attacker that has the capability
to tamper with a hardware (e.g. "rewiring" a chip using a focused
ion beam (FIB) workstation or decapsulate the chip using chemicals) is
considered out-of-scope.
Certain non-invasive physical attacks that do not need modifications to the
chip, notably those like Power Analysis Attacks, are out-of-scope. Power
analysis side-channel attacks represent a category of security threats that
capitalize on information leakage through a device's power consumption during
its normal operation. These attacks leverage the correlation between a
device's power usage and its internal data processing activities. This
correlation provides attackers with the means to extract sensitive
information, including cryptographic keys.
Threat Types
============
In this threat model we categorize threats using the `STRIDE threat
analysis technique`_. In this technique a threat is categorized as one
or more of these types: ``Spoofing``, ``Tampering``, ``Repudiation``,
``Information disclosure``, ``Denial of service`` or
``Elevation of privilege``.
Threat Risk Ratings
===================
For each threat identified, a risk rating that ranges
from *informational* to *critical* is given based on the likelihood of the
threat occurring if a mitigation is not in place, and the impact of the
threat (i.e. how severe the consequences could be). Table 4 explains each
rating in terms of score, impact and likelihood.
.. table:: Table 4: Rating and score as applied to impact and likelihood
+-----------------------+-------------------------+---------------------------+
| **Rating (Score)** | **Impact** | **Likelihood** |
+=======================+=========================+===========================+
| Critical (5) | | Extreme impact to | | Threat is almost |
| | entire organization | certain to be exploited.|
| | if exploited. | |
| | | | Knowledge of the threat |
| | | and how to exploit it |
| | | are in the public |
| | | domain. |
+-----------------------+-------------------------+---------------------------+
| High (4) | | Major impact to entire| | Threat is relatively |
| | organization or single| easy to detect and |
| | line of business if | exploit by an attacker |
| | exploited | with little skill. |
+-----------------------+-------------------------+---------------------------+
| Medium (3) | | Noticeable impact to | | A knowledgeable insider |
| | line of business if | or expert attacker could|
| | exploited. | exploit the threat |
| | | without much difficulty.|
+-----------------------+-------------------------+---------------------------+
| Low (2) | | Minor damage if | | Exploiting the threat |
| | exploited or could | would require |
| | be used in conjunction| considerable expertise |
| | with other | and resources |
| | vulnerabilities to | |
| | perform a more serious| |
| | attack | |
+-----------------------+-------------------------+---------------------------+
| Informational (1) | | Poor programming | | Threat is not likely |
| | practice or poor | to be exploited on its |
| | design decision that | own, but may be used to |
| | may not represent an | gain information for |
| | immediate risk on its | launching another |
| | own, but may have | attack |
| | security implications | |
| | if multiplied and/or | |
| | combined with other | |
| | threats. | |
+-----------------------+-------------------------+---------------------------+
Aggregate risk scores are assigned to identified threats;
specifically, the impact score multiplied by the likelihood score.
For example, a threat with high likelihood and low impact would have an
aggregate risk score of eight (8); that is, four (4) for high likelihood
multiplied by two (2) for low impact. The aggregate risk score determines
the finding's overall risk level, as shown in the following table.
.. table:: Table 5: Overall risk levels and corresponding aggregate scores
+---------------------+-----------------------------------+
| Overall Risk Level | Aggregate Risk Score |
| | (Impact multiplied by Likelihood) |
+=====================+===================================+
| Critical | 20–25 |
+---------------------+-----------------------------------+
| High | 12–19 |
+---------------------+-----------------------------------+
| Medium | 6–11 |
+---------------------+-----------------------------------+
| Low | 2–5 |
+---------------------+-----------------------------------+
| Informational | 1 |
+---------------------+-----------------------------------+
The likelihood and impact of a threat depends on the
target environment in which TF-A is running. For example, attacks
that require physical access are unlikely in server environments while
they are more common in Internet of Things(IoT) environments.
In this threat model we consider three target environments:
``Internet of Things(IoT)``, ``Mobile`` and ``Server``.
Threat Assessment
=================
The following threats were identified by applying STRIDE analysis on
each diagram element of the data flow diagram.
For each threat, we strive to indicate whether the mitigations are currently
implemented or not. However, the answer to this question is not always straight
forward. Some mitigations are partially implemented in the generic code but also
rely on the platform code to implement some bits of it. This threat model aims
to be platform-independent and it is important to keep in mind that such threats
only get mitigated if the platform code properly fulfills its responsibilities.
Also, some mitigations require enabling specific features, which must be
explicitly turned on via a build flag.
When such conditions must be met, these are highlighted in the ``Mitigations
implemented?`` box.
As our :ref:`Target of Evaluation` is made of several, distinct firmware images,
some threats are confined in specific images, while others apply to each of
them. To help developers implement mitigations in the right place, threats below
are categorized based on the firmware image that should mitigate them.
.. _General Threats:
General Threats for All Firmware Images
---------------------------------------
+------------------------+---------------------------------------------------+
| ID | 05 |
+========================+===================================================+
| Threat | | **Information leak via UART logs** |
| | |
| | | During the development stages of software it is |
| | common to print all sorts of information on the |
| | console, including sensitive or confidential |
| | information such as crash reports with detailed |
| | information of the CPU state, current registers |
| | values, privilege level or stack dumps. |
| | |
| | | This information is useful when debugging |
| | problems before releasing the production |
| | version but it could be used by an attacker |
| | to develop a working exploit if left enabled in |
| | the production version. |
| | |
| | | This happens when directly logging sensitive |
| | information and more subtly when logging |
| | side-channel information that can be used by an |
| | attacker to learn about sensitive information. |
+------------------------+---------------------------------------------------+
| Diagram Elements | DF2 |
+------------------------+---------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+---------------------------------------------------+
| Assets | Sensitive Data |
+------------------------+---------------------------------------------------+
| Threat Agent | AppDebug |
+------------------------+---------------------------------------------------+
| Threat Type | Information Disclosure |
+------------------------+------------------+----------------+---------------+
| Application | Server | IoT | Mobile |
+------------------------+------------------+----------------+---------------+
| Impact | N/A | Low (2) | Low (2) |
+------------------------+------------------+----------------+---------------+
| Likelihood | N/A | High (4) | High (4) |
+------------------------+------------------+----------------+---------------+
| Total Risk Rating | N/A | Medium (8) | Medium (8) |
+------------------------+------------------+----------------+---------------+
| Mitigations | | Remove sensitive information logging in |
| | production releases. |
| | |
| | | Do not conditionally log information depending |
| | on potentially sensitive data. |
| | |
| | | Do not log high precision timing information. |
+------------------------+---------------------------------------------------+
| Mitigations | | Yes / Platform Specific. |
| implemented? | Requires the right build options to be used. |
| | |
| | | Crash reporting is only enabled for debug |
| | builds by default, see ``CRASH_REPORTING`` |
| | build option. |
| | |
| | | The log level can be tuned at build time, from |
| | very verbose to no output at all. See |
| | ``LOG_LEVEL`` build option. By default, release |
| | builds are a lot less verbose than debug ones |
| | but still produce some output. |
| | |
| | | Messages produced by the platform code should |
| | use the appropriate level of verbosity so as |
| | not to leak sensitive information in production |
| | builds. |
+------------------------+---------------------------------------------------+
+------------------------+----------------------------------------------------+
| ID | 06 |
+========================+====================================================+
| Threat | | **An attacker can read sensitive data and |
| | execute arbitrary code through the external |
| | debug and trace interface** |
| | |
| | | Arm processors include hardware-assisted debug |
| | and trace features that can be controlled without|
| | the need for software operating on the platform. |
| | If left enabled without authentication, this |
| | feature can be used by an attacker to inspect and|
| | modify TF-A registers and memory allowing the |
| | attacker to read sensitive data and execute |
| | arbitrary code. |
+------------------------+----------------------------------------------------+
| Diagram Elements | DF3 |
+------------------------+----------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+----------------------------------------------------+
| Assets | Code Execution, Sensitive Data |
+------------------------+----------------------------------------------------+
| Threat Agent | AppDebug |
+------------------------+----------------------------------------------------+
| Threat Type | Tampering, Information Disclosure, |
| | Elevation of privilege |
+------------------------+------------------+---------------+-----------------+
| Application | Server | IoT | Mobile |
+------------------------+------------------+---------------+-----------------+
| Impact | N/A | High (4) | High (4) |
+------------------------+------------------+---------------+-----------------+
| Likelihood | N/A | Critical (5) | Critical (5) |
+------------------------+------------------+---------------+-----------------+
| Total Risk Rating | N/A | Critical (20) | Critical (20) |
+------------------------+------------------+---------------+-----------------+
| Mitigations | Disable the debug and trace capability for |
| | production releases or enable proper debug |
| | authentication as recommended by [`DEN0034`_]. |
+------------------------+----------------------------------------------------+
| Mitigations | | Platform specific. |
| implemented? | |
| | | Configuration of debug and trace capabilities is |
| | entirely platform specific. |
+------------------------+----------------------------------------------------+
+------------------------+------------------------------------------------------+
| ID | 08 |
+========================+======================================================+
| Threat | | **Memory corruption due to memory overflows and |
| | lack of boundary checking when accessing resources |
| | could allow an attacker to execute arbitrary code, |
| | modify some state variable to change the normal |
| | flow of the program, or leak sensitive |
| | information** |
| | |
| | | Like in other software, TF-A has multiple points |
| | where memory corruption security errors can arise. |
| | |
| | | Some of the errors include integer overflow, |
| | buffer overflow, incorrect array boundary checks, |
| | and incorrect error management. |
| | Improper use of asserts instead of proper input |
| | validations might also result in these kinds of |
| | errors in release builds. |
+------------------------+------------------------------------------------------+
| Diagram Elements | DF4, DF5 |
+------------------------+------------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+------------------------------------------------------+
| Assets | Code Execution, Sensitive Data |
+------------------------+------------------------------------------------------+
| Threat Agent | NSCode, SecCode |
+------------------------+------------------------------------------------------+
| Threat Type | Tampering, Information Disclosure, |
| | Elevation of Privilege |
+------------------------+-------------------+-----------------+----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+-----------------+----------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+-------------------+-----------------+----------------+
| Likelihood | Medium (3 | Medium (3) | Medium (3) |
+------------------------+-------------------+-----------------+----------------+
| Total Risk Rating | High (15) | High (15) | High (15) |
+------------------------+-------------------+-----------------+----------------+
| Mitigations | | 1) Use proper input validation. |
| | |
| | | 2) Code reviews, testing. |
+------------------------+------------------------------------------------------+
| Mitigations | | 1) Yes. |
| implemented? | Data received from normal world, such as addresses |
| | and sizes identifying memory regions, are |
| | sanitized before being used. These security checks |
| | make sure that the normal world software does not |
| | access memory beyond its limit. |
| | |
| | | By default *asserts* are only used to check for |
| | programming errors in debug builds. Other types of |
| | errors are handled through condition checks that |
| | remain enabled in release builds. See |
| | `TF-A error handling policy`_. TF-A provides an |
| | option to use *asserts* in release builds, however |
| | we recommend using proper runtime checks instead |
| | of relying on asserts in release builds. |
| | |
| | | 2) Yes. |
| | TF-A uses a combination of manual code reviews |
| | and automated program analysis and testing to |
| | detect and fix memory corruption bugs. All TF-A |
| | code including platform code go through manual |
| | code reviews. Additionally, static code analysis |
| | is performed using Coverity Scan on all TF-A code. |
| | The code is also tested with |
| | `Trusted Firmware-A Tests`_ on Juno and FVP |
| | platforms. |
+------------------------+------------------------------------------------------+
+------------------------+----------------------------------------------------+
| ID | 11 |
+========================+====================================================+
| Threat | | **Misconfiguration of the Memory Management Unit |
| | (MMU) may allow a normal world software to |
| | access sensitive data, execute arbitrary |
| | code or access otherwise restricted HW |
| | interface** |
| | |
| | | A misconfiguration of the MMU could |
| | lead to an open door for software running in the |
| | normal world to access sensitive data or even |
| | execute code if the proper security mechanisms |
| | are not in place. |
+------------------------+----------------------------------------------------+
| Diagram Elements | DF5, DF6 |
+------------------------+----------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+----------------------------------------------------+
| Assets | Sensitive Data, Code execution |
+------------------------+----------------------------------------------------+
| Threat Agent | NSCode |
+------------------------+----------------------------------------------------+
| Threat Type | Information Disclosure, Elevation of Privilege |
+------------------------+-----------------+-----------------+----------------+
| Application | Server | IoT | Mobile |
+------------------------+-----------------+-----------------+----------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+-----------------+-----------------+----------------+
| Likelihood | High (4) | High (4) | High (4) |
+------------------------+-----------------+-----------------+----------------+
| Total Risk Rating | Critical (20) | Critical (20) | Critical (20) |
+------------------------+-----------------+-----------------+----------------+
| Mitigations | When configuring access permissions, the |
| | principle of least privilege ought to be |
| | enforced. This means we should not grant more |
| | privileges than strictly needed, e.g. code |
| | should be read-only executable, read-only data |
| | should be read-only execute-never, and so on. |
+------------------------+----------------------------------------------------+
| Mitigations | | Platform specific. |
| implemented? | |
| | | MMU configuration is platform specific, |
| | therefore platforms need to make sure that the |
| | correct attributes are assigned to memory |
| | regions. |
| | |
| | | TF-A provides a library which abstracts the |
| | low-level details of MMU configuration. It |
| | provides well-defined and tested APIs. |
| | Platforms are encouraged to use it to limit the |
| | risk of misconfiguration. |
+------------------------+----------------------------------------------------+
+------------------------+-----------------------------------------------------+
| ID | 13 |
+========================+=====================================================+
| Threat | | **Leaving sensitive information in the memory, |
| | can allow an attacker to retrieve them.** |
| | |
| | | Accidentally leaving not-needed sensitive data in |
| | internal buffers can leak them if an attacker |
| | gains access to memory due to a vulnerability. |
+------------------------+-----------------------------------------------------+
| Diagram Elements | DF4, DF5 |
+------------------------+-----------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+-----------------------------------------------------+
| Assets | Sensitive Data |
+------------------------+-----------------------------------------------------+
| Threat Agent | NSCode, SecCode |
+------------------------+-----------------------------------------------------+
| Threat Type | Information Disclosure |
+------------------------+-------------------+----------------+----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+----------------+----------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+-------------------+----------------+----------------+
| Likelihood | Medium (3) | Medium (3) | Medium (3) |
+------------------------+-------------------+----------------+----------------+
| Total Risk Rating | High (15) | High (15) | High (15) |
+------------------------+-------------------+----------------+----------------+
| Mitigations | Clear the sensitive data from internal buffers as |
| | soon as they are not needed anymore. |
+------------------------+-----------------------------------------------------+
| Mitigations | | Yes / Platform specific |
| implemented? | |
+------------------------+-----------------------------------------------------+
+------------------------+-----------------------------------------------------+
| ID | 15 |
+========================+=====================================================+
| Threat | | **Improper handling of input data received over |
| | a UART interface may allow an attacker to tamper |
| | with TF-A execution environment.** |
| | |
| | | The consequences of the attack depend on the |
| | the exact usage of input data received over UART. |
| | Examples are injection of arbitrary data, |
| | sensitive data tampering, influencing the |
| | execution path, denial of service (if using |
| | blocking I/O). This list may not be exhaustive. |
+------------------------+-----------------------------------------------------+
| Diagram Elements | DF2, DF4, DF5 |
+------------------------+-----------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+-----------------------------------------------------+
| Assets | Sensitive Data, Code Execution, Availability |
+------------------------+-----------------------------------------------------+
| Threat Agent | NSCode, SecCode |
+------------------------+-----------------------------------------------------+
| Threat Type | Tampering, Information Disclosure, Denial of |
| | service, Elevation of privilege. |
+------------------------+-------------------+----------------+----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+----------------+----------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+-------------------+----------------+----------------+
| Likelihood | Critical (5) | Critical (5) | Critical (5) |
+------------------------+-------------------+----------------+----------------+
| Total Risk Rating | Critical (25) | Critical (25) | Critical (25) |
+------------------------+-------------------+----------------+----------------+
| Mitigations | | By default, the code to read input data from UART |
| | interfaces is disabled (see `ENABLE_CONSOLE_GETC` |
| | build option). It should only be enabled on a |
| | need basis. |
| | |
| | | Data received over UART interfaces should be |
| | treated as untrusted data. As such, it should be |
| | properly sanitized and handled with caution. |
+------------------------+-----------------------------------------------------+
| Mitigations | | Platform specific. |
| implemented? | |
| | | Generic code does not read any input data from |
| | UART interface(s). |
+------------------------+-----------------------------------------------------+
+------------------------+-----------------------------------------------------+
| ID | 16 |
+========================+=====================================================+
| Threat | | **An attacker could analyse the timing behaviour |
| | of implemented methods in the system to infer |
| | sensitive information.** |
| | |
| | | A timing side-channel attack is a type of attack |
| | that exploits variations in the time it takes a |
| | system to perform different operations. This |
| | form of attack focuses on analyzing the time- |
| | related information leakage that occurs during |
| | the execution of cryptographic algorithms or |
| | other security-sensitive processes. By observing |
| | these timing differences, an attacker can gain |
| | insights into the internal workings of a system |
| | and potentially extract sensitive information. |
| | Sensitive information that, when revealed even |
| | partially, could heighten the susceptibility to |
| | traditional attacks like brute-force attacks. |
+------------------------+-----------------------------------------------------+
| Diagram Elements | DF2 |
+------------------------+-----------------------------------------------------+
| Affected TF-A | BL1, BL2, BL31 |
| Components | |
+------------------------+-----------------------------------------------------+
| Assets | Sensitive Data |
+------------------------+-----------------------------------------------------+
| Threat Agent | AppDebug |
+------------------------+-----------------------------------------------------+
| Threat Type | Information Disclosure |
+------------------------+------------------+----------------+-----------------+
| Application | Server | IoT | Mobile |
+------------------------+------------------+----------------+-----------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+------------------+----------------+-----------------+
| Likelihood | Critical (5) | Critical (5) | Critical (5) |
+------------------------+------------------+----------------+-----------------+
| Total Risk Rating | Critical (25) | Critical (25) | Critical (25) |
+------------------------+------------------+----------------+-----------------+
| Mitigations | | Ensure that the execution time of critical |
| | operations is constant and independent of |
| | secret data. This prevents attackers from |
| | exploiting timing differences to infer |
| | information about sensitive data. |
| | |
| | | Introduce random delays/timing jitter or dummy |
| | operations to make the timing behavior of program|
| | execution less predictable. This can disrupt the |
| | correlation between the execution time and |
| | sensitive data. |
| | |
+------------------------+-----------------------------------------------------+
| Mitigations | | Not implemented |
| implemented? | |
+------------------------+-----------------------------------------------------+
.. _Boot Firmware Threats:
Threats to be Mitigated by the Boot Firmware
--------------------------------------------
The boot firmware here refers to the boot ROM (BL1) and the trusted boot
firmware (BL2). Typically it does not stay resident in memory and it is
dismissed once execution has reached the runtime EL3 firmware (BL31). Thus, past
that point in time, the threats below can no longer be exploited.
Note, however, that this is not necessarily true on all platforms. Platform
vendors should review these threats to make sure they cannot be exploited
nonetheless once execution has reached the runtime EL3 firmware.
+------------------------+----------------------------------------------------+
| ID | 01 |
+========================+====================================================+
| Threat | | **An attacker can mangle firmware images to |
| | execute arbitrary code** |
| | |
| | | Some TF-A images are loaded from external |
| | storage. It is possible for an attacker to access|
| | the external flash memory and change its contents|
| | physically, through the Rich OS, or using the |
| | updating mechanism to modify the non-volatile |
| | images to execute arbitrary code. |
+------------------------+----------------------------------------------------+
| Diagram Elements | DF1, DF4, DF5 |
+------------------------+----------------------------------------------------+
| Affected TF-A | BL2, BL31 |
| Components | |
+------------------------+----------------------------------------------------+
| Assets | Code Execution |
+------------------------+----------------------------------------------------+
| Threat Agent | PhysicalAccess, NSCode, SecCode |
+------------------------+----------------------------------------------------+
| Threat Type | Tampering, Elevation of Privilege |
+------------------------+------------------+-----------------+---------------+
| Application | Server | IoT | Mobile |
+------------------------+------------------+-----------------+---------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+------------------+-----------------+---------------+
| Likelihood | Critical (5) | Critical (5) | Critical (5) |
+------------------------+------------------+-----------------+---------------+
| Total Risk Rating | Critical (25) | Critical (25) | Critical (25) |
+------------------------+------------------+-----------------+---------------+
| Mitigations | | 1) Implement the `Trusted Board Boot (TBB)`_ |
| | feature which prevents malicious firmware from |
| | running on the platform by authenticating all |
| | firmware images. |
| | |
| | | 2) Perform extra checks on unauthenticated data, |
| | such as FIP metadata, prior to use. |
+------------------------+----------------------------------------------------+
| Mitigations | | 1) Yes, provided that the ``TRUSTED_BOARD_BOOT`` |
| implemented? | build option is set to 1. |
| | |
| | | 2) Yes. |
+------------------------+----------------------------------------------------+
+------------------------+----------------------------------------------------+
| ID | 02 |
+========================+====================================================+
| Threat | | **An attacker may attempt to boot outdated, |
| | potentially vulnerable firmware image** |
| | |
| | | When updating firmware, an attacker may attempt |
| | to rollback to an older version that has unfixed |
| | vulnerabilities. |
+------------------------+----------------------------------------------------+
| Diagram Elements | DF1, DF4, DF5 |
+------------------------+----------------------------------------------------+
| Affected TF-A | BL2, BL31 |
| Components | |
+------------------------+----------------------------------------------------+
| Assets | Code Execution |
+------------------------+----------------------------------------------------+
| Threat Agent | PhysicalAccess, NSCode, SecCode |
+------------------------+----------------------------------------------------+
| Threat Type | Tampering |
+------------------------+------------------+-----------------+---------------+
| Application | Server | IoT | Mobile |
+------------------------+------------------+-----------------+---------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+------------------+-----------------+---------------+
| Likelihood | Critical (5) | Critical (5) | Critical (5) |
+------------------------+------------------+-----------------+---------------+
| Total Risk Rating | Critical (25) | Critical (25) | Critical (25) |
+------------------------+------------------+-----------------+---------------+
| Mitigations | Implement anti-rollback protection using |
| | non-volatile counters (NV counters) as required |
| | by `TBBR-Client specification`_. |
+------------------------+----------------------------------------------------+
| Mitigations | | Yes / Platform specific. |
| implemented? | |
| | | After a firmware image is validated, the image |
| | revision number taken from a certificate |
| | extension field is compared with the |
| | corresponding NV counter stored in hardware to |
| | make sure the new counter value is larger than |
| | the current counter value. |
| | |
| | | **Platforms must implement this protection using |
| | platform specific hardware NV counters.** |
+------------------------+----------------------------------------------------+
+------------------------+-------------------------------------------------------+
| ID | 03 |
+========================+=======================================================+
| Threat | | **An attacker can use Time-of-Check-Time-of-Use |
| | (TOCTOU) attack to bypass image authentication |
| | during the boot process** |
| | |
| | | Time-of-Check-Time-of-Use (TOCTOU) threats occur |
| | when the security check is produced before the time |
| | the resource is accessed. If an attacker is sitting |
| | in the middle of the off-chip images, they could |
| | change the binary containing executable code right |
| | after the integrity and authentication check has |
| | been performed. |
+------------------------+-------------------------------------------------------+
| Diagram Elements | DF1 |
+------------------------+-------------------------------------------------------+
| Affected TF-A | BL1, BL2 |
| Components | |
+------------------------+-------------------------------------------------------+
| Assets | Code Execution, Sensitive Data |
+------------------------+-------------------------------------------------------+
| Threat Agent | PhysicalAccess |
+------------------------+-------------------------------------------------------+
| Threat Type | Elevation of Privilege |
+------------------------+---------------------+-----------------+---------------+
| Application | Server | IoT | Mobile |
+------------------------+---------------------+-----------------+---------------+
| Impact | N/A | Critical (5) | Critical (5) |
+------------------------+---------------------+-----------------+---------------+
| Likelihood | N/A | Medium (3) | Medium (3) |
+------------------------+---------------------+-----------------+---------------+
| Total Risk Rating | N/A | High (15) | High (15) |
+------------------------+---------------------+-----------------+---------------+
| Mitigations | Copy image to on-chip memory before authenticating |
| | it. |
+------------------------+-------------------------------------------------------+
| Mitigations | | Platform specific. |
| implemented? | |
| | | The list of images to load and their location is |
| | platform specific. Platforms are responsible for |
| | arranging images to be loaded in on-chip memory. |
+------------------------+-------------------------------------------------------+
+------------------------+-------------------------------------------------------+
| ID | 04 |
+========================+=======================================================+
| Threat | | **An attacker with physical access can execute |
| | arbitrary image by bypassing the signature |
| | verification stage using glitching techniques** |
| | |
| | | Glitching (Fault injection) attacks attempt to put |
| | a hardware into a undefined state by manipulating an|
| | environmental variable such as power supply. |
| | |
| | | TF-A relies on a chain of trust that starts with the|
| | ROTPK, which is the key stored inside the chip and |
| | the root of all validation processes. If an attacker|
| | can break this chain of trust, they could execute |
| | arbitrary code on the device. This could be |
| | achieved with physical access to the device by |
| | attacking the normal execution flow of the |
| | process using glitching techniques that target |
| | points where the image is validated against the |
| | signature. |
+------------------------+-------------------------------------------------------+
| Diagram Elements | DF1 |
+------------------------+-------------------------------------------------------+
| Affected TF-A | BL1, BL2 |
| Components | |
+------------------------+-------------------------------------------------------+
| Assets | Code Execution |
+------------------------+-------------------------------------------------------+
| Threat Agent | PhysicalAccess |
+------------------------+-------------------------------------------------------+
| Threat Type | Tampering, Elevation of Privilege |
+------------------------+---------------------+-----------------+---------------+
| Application | Server | IoT | Mobile |
+------------------------+---------------------+-----------------+---------------+
| Impact | N/A | Critical (5) | Critical (5) |
+------------------------+---------------------+-----------------+---------------+
| Likelihood | N/A | Medium (3) | Medium (3) |
+------------------------+---------------------+-----------------+---------------+
| Total Risk Rating | N/A | High (15) | High (15) |
+------------------------+---------------------+-----------------+---------------+
| Mitigations | Mechanisms to detect clock glitch and power |
| | variations. |
+------------------------+-------------------------------------------------------+
| Mitigations | | No. |
| implemented? | |
| | | The most effective mitigation is adding glitching |
| | detection and mitigation circuit at the hardware |
| | level. |
| | |
| | | However, software techniques, such as adding |
| | redundant checks when performing conditional |
| | branches that are security sensitive, can be used |
| | to harden TF-A against such attacks. |
| | **At the moment TF-A doesn't implement such |
| | mitigations.** |
+------------------------+-------------------------------------------------------+
.. topic:: Measured Boot Threats (or lack of)
In the current Measured Boot design the following components form the |TCB|:
- BL1, BL2, BL31
- Secure world components
- RMM (if RME extension is implemented)
- The configuration data of the above components
Across various Measured Boot backends, the data recorded during the flow as
well as the criticality of this data can vary. In most cases, these attributes
are considered valuable assets and are protected against potential attacks:
- Image measurement: the digest value of a component produced by a hash
function.
- Signer-id: the digest value of the image verification publiy key. The
verification public key is part of the image metadata.
In addition to these, other metadata attributes (image version, hash algorithm
identifier, etc) could be recorded during the Measured Boot process. But these
are not critical data.
In this context, an attack means modifying the measurement data (image or
public key hash) or recording arbitrary data as valid measurements.
The current Measured Boot design consists of two main parts. A frontend, which
is responsible for taking the measurements, and a backend which is responsible
for storing them. |TF-A| makes it possible to integrate various backends. Some
of these are implemented by the |TF-A| projects, while others are part of
different projects, and |TF-A| provides an integration layer.
- TCG-compliant Event Log: Implemented by |TF-A|. Measurements are stored in
the Event Log which is located on the secure on-chip memory of the AP. The
address of the Event Log buffer is handed off between boot stages and new
measurements are appended to the Event Log. A limitation of the current
Measured Boot implementation in |TF-A| is that it does not extend the
measurements into a |PCR| of a Discrete |TPM|, where measurements would
be securely stored and protected against tampering.
- `CCA Measured Boot`_: Implemented by |TF-M|. Measurements are stored in
|HES| secure on-chip memory. |HES| implements protection against tampering
its on-chip memory. |HES| interface is available for BL1 and BL2.
- `DICE Protection Environment`_ (DPE): Implemented by |TF-M|. Measurements
are stored in |RSE| secure on-chip memory. |RSE| implements protection
against tampering its on-chip memory. DPE provides additional protection
against unauthorized access by malicious actors through the use of one-time
context handles and the identification of the client's target locality
(location of the client).
Beyond the measurements (image digest and signer-id) there are no other assets
to protect or threats to defend against that could compromise |TF-A| execution
environment's security.
There are general security assets and threats associated with remote/delegated
attestation. However, these are outside the |TF-A| security boundary and
should be dealt with by the appropriate agent in the platform/system.
Since current Measured Boot design does not use local attestation, there would
be no further assets to protect (like unsealed keys).
System integrators must carefully evaluate the security requirement and
capabilities of their platform and choose an appropriate Measured Boot
solution.
.. _Runtime Firmware Threats:
Threats to be Mitigated by the Runtime EL3 Firmware
---------------------------------------------------
+------------------------+------------------------------------------------------+
| ID | 07 |
+========================+======================================================+
| Threat | | **An attacker can perform a denial-of-service |
| | attack by using a broken SMC call that causes the |
| | system to reboot or enter into unknown state.** |
| | |
| | | Secure and non-secure clients access TF-A services |
| | through SMC calls. Malicious code can attempt to |
| | place the TF-A runtime into an inconsistent state |
| | by calling unimplemented SMC call or by passing |
| | invalid arguments. |
+------------------------+------------------------------------------------------+
| Diagram Elements | DF4, DF5 |
+------------------------+------------------------------------------------------+
| Affected TF-A | BL31 |
| Components | |
+------------------------+------------------------------------------------------+
| Assets | Availability |
+------------------------+------------------------------------------------------+
| Threat Agent | NSCode, SecCode |
+------------------------+------------------------------------------------------+
| Threat Type | Denial of Service |
+------------------------+-------------------+----------------+-----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+----------------+-----------------+
| Impact | Medium (3) | Medium (3) | Medium (3) |
+------------------------+-------------------+----------------+-----------------+
| Likelihood | High (4) | High (4) | High (4) |
+------------------------+-------------------+----------------+-----------------+
| Total Risk Rating | High (12) | High (12) | High (12) |
+------------------------+-------------------+----------------+-----------------+
| Mitigations | Validate SMC function ids and arguments before using |
| | them. |
+------------------------+------------------------------------------------------+
| Mitigations | | Yes / Platform specific. |
| implemented? | |
| | | For standard services, all input is validated. |
| | |
| | | Platforms that implement SiP services must also |
| | validate SMC call arguments. |
+------------------------+------------------------------------------------------+
+------------------------+------------------------------------------------------+
| ID | 09 |
+========================+======================================================+
| Threat | | **Improperly handled SMC calls can leak register |
| | contents** |
| | |
| | | When switching between worlds, TF-A register state |
| | can leak to software in different security |
| | contexts. |
+------------------------+------------------------------------------------------+
| Diagram Elements | DF4, DF5 |
+------------------------+------------------------------------------------------+
| Affected TF-A | BL31 |
| Components | |
+------------------------+------------------------------------------------------+
| Assets | Sensitive Data |
+------------------------+------------------------------------------------------+
| Threat Agent | NSCode, SecCode |
+------------------------+------------------------------------------------------+
| Threat Type | Information Disclosure |
+------------------------+-------------------+----------------+-----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+----------------+-----------------+
| Impact | Medium (3) | Medium (3) | Medium (3) |
+------------------------+-------------------+----------------+-----------------+
| Likelihood | High (4) | High (4) | High (4) |
+------------------------+-------------------+----------------+-----------------+
| Total Risk Rating | High (12) | High (12) | High (12) |
+------------------------+-------------------+----------------+-----------------+
| Mitigations | Save and restore registers when switching contexts. |
+------------------------+------------------------------------------------------+
| Mitigations | | Yes. |
| implemented? | |
| | | This is the default behaviour in TF-A. |
| | Build options are also provided to save/restore |
| | additional registers such as floating-point |
| | registers. These should be enabled if required. |
+------------------------+------------------------------------------------------+
+------------------------+-----------------------------------------------------+
| ID | 10 |
+========================+=====================================================+
| Threat | | **SMC calls can leak sensitive information from |
| | TF-A memory via microarchitectural side channels**|
| | |
| | | Microarchitectural side-channel attacks such as |
| | `Spectre`_ can be used to leak data across |
| | security boundaries. An attacker might attempt to |
| | use this kind of attack to leak sensitive |
| | data from TF-A memory. |
+------------------------+-----------------------------------------------------+
| Diagram Elements | DF4, DF5 |
+------------------------+-----------------------------------------------------+
| Affected TF-A | BL31 |
| Components | |
+------------------------+-----------------------------------------------------+
| Assets | Sensitive Data |
+------------------------+-----------------------------------------------------+
| Threat Agent | SecCode, NSCode |
+------------------------+-----------------------------------------------------+
| Threat Type | Information Disclosure |
+------------------------+-------------------+----------------+----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+----------------+----------------+
| Impact | Medium (3) | Medium (3) | Medium (3) |
+------------------------+-------------------+----------------+----------------+
| Likelihood | Medium (3) | Medium (3) | Medium (3) |
+------------------------+-------------------+----------------+----------------+
| Total Risk Rating | Medium (9) | Medium (9) | Medium (9) |
+------------------------+-------------------+----------------+----------------+
| Mitigations | Enable appropriate side-channel protections. |
+------------------------+-----------------------------------------------------+
| Mitigations | | Yes / Platform specific. |
| implemented? | |
| | | TF-A implements software mitigations for Spectre |
| | type attacks as recommended by `Cache Speculation |
| | Side-channels`_ for the generic code. |
| | |
| | | SiPs should implement similar mitigations for |
| | code that is deemed to be vulnerable to such |
| | attacks. |
+------------------------+-----------------------------------------------------+
+------------------------+-----------------------------------------------------+
| ID | 12 |
+========================+=====================================================+
| Threat | | **Incorrect configuration of Performance Monitor |
| | Unit (PMU) counters can allow an attacker to |
| | mount side-channel attacks using information |
| | exposed by the counters** |
| | |
| | | Non-secure software can configure PMU registers |
| | to count events at any exception level and in |
| | both Secure and Non-secure states. This allows |
| | a Non-secure software (or a lower-level Secure |
| | software) to potentially carry out |
| | side-channel timing attacks against TF-A. |
+------------------------+-----------------------------------------------------+
| Diagram Elements | DF5, DF6 |
+------------------------+-----------------------------------------------------+
| Affected TF-A | BL31 |
| Components | |
+------------------------+-----------------------------------------------------+
| Assets | Sensitive Data |
+------------------------+-----------------------------------------------------+
| Threat Agent | NSCode |
+------------------------+-----------------------------------------------------+
| Threat Type | Information Disclosure |
+------------------------+-------------------+----------------+----------------+
| Application | Server | IoT | Mobile |
+------------------------+-------------------+----------------+----------------+
| Impact | Medium (3) | Medium (3) | Medium (3) |
+------------------------+-------------------+----------------+----------------+
| Likelihood | Low (2) | Low (2) | Low (2) |
+------------------------+-------------------+----------------+----------------+
| Total Risk Rating | Medium (6) | Medium (6) | Medium (6) |
+------------------------+-------------------+----------------+----------------+
| Mitigations | Follow mitigation strategies as described in |
| | `Secure Development Guidelines`_. |
+------------------------+-----------------------------------------------------+
| Mitigations | | Yes / platform specific. |
| implemented? | |
| | | General events and cycle counting in the Secure |
| | world is prohibited by default when applicable. |
| | |
| | | However, on some implementations (e.g. PMUv3) |
| | Secure world event counting depends on external |
| | debug interface signals, i.e. Secure world event |
| | counting is enabled if external debug is enabled. |
| | |
| | | Configuration of debug signals is platform |
| | specific, therefore platforms need to make sure |
| | that external debug is disabled in production or |
| | proper debug authentication is in place. This |
| | should be the case if threat #06 is properly |
| | mitigated. |
+------------------------+-----------------------------------------------------+
Threats to be Mitigated by an External Agent Outside of TF-A
------------------------------------------------------------
+------------------------+-----------------------------------------------------+
| ID | 14 |
+========================+=====================================================+
| Threat | | **Attacker wants to execute an arbitrary or |
| | untrusted binary as the secure OS.** |
| | |
| | | When the option OPTEE_ALLOW_SMC_LOAD is enabled, |
| | this trusts the non-secure world up until the |
| | point it issues the SMC call to load the Secure |
| | BL32 payload. If a compromise occurs before the |
| | SMC call is invoked, then arbitrary code execution|
| | in S-EL1 can occur or arbitrary memory in EL3 can |
| | be overwritten. |
+------------------------+-----------------------------------------------------+
| Diagram Elements | DF5 |
+------------------------+-----------------------------------------------------+
| Affected TF-A | BL31, BL32 |
| Components | |
+------------------------+-----------------------------------------------------+
| Assets | Code Execution, Sensitive Data |
+------------------------+-----------------------------------------------------+
| Threat Agent | NSCode |
+------------------------+-----------------------------------------------------+
| Threat Type | Tampering, Information Disclosure, |
| | Elevation of privilege |
+------------------------+-----------------+-----------------+-----------------+
| Application | Server | IoT | Mobile |
+------------------------+-----------------+-----------------+-----------------+
| Impact | Critical (5) | Critical (5) | Critical (5) |
+------------------------+-----------------+-----------------+-----------------+
| Likelihood | High (4) | High (4) | High (4) |
+------------------------+-----------------+-----------------+-----------------+
| Total Risk Rating | Critical (20) | Critical (20) | Critical (20) |
+------------------------+-----------------+-----------------+-----------------+
| Mitigations | When enabling the option OPTEE_ALLOW_SMC_LOAD, |
| | the non-secure OS must be considered a closed |
| | platform up until the point the SMC can be invoked |
| | to load OP-TEE. |
+------------------------+-----------------------------------------------------+
| Mitigations | | None in TF-A itself. This option is only used by |
| implemented? | ChromeOS currently which has other mechanisms to |
| | to mitigate this threat which are described in |
| | `OP-TEE Dispatcher`_. |
+------------------------+-----------------------------------------------------+
--------------
*Copyright (c) 2021-2024, Arm Limited. All rights reserved.*
.. _STRIDE threat analysis technique: https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model
.. _DEN0034: https://developer.arm.com/documentation/den0034/latest
.. _Cache Speculation Side-channels: https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
.. _Spectre: https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
.. _TBBR-Client specification: https://developer.arm.com/documentation/den0006/d/
.. _Trusted Board Boot (TBB): https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
.. _TF-A error handling policy: https://trustedfirmware-a.readthedocs.io/en/latest/process/coding-guidelines.html#error-handling-and-robustness
.. _Secure Development Guidelines: https://trustedfirmware-a.readthedocs.io/en/latest/process/security-hardening.html#secure-development-guidelines
.. _Trusted Firmware-A Tests: https://git.trustedfirmware.org/TF-A/tf-a-tests.git/about/
.. _OP-TEE Dispatcher: https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/components/spd/optee-dispatcher.rst
.. _PSR Specification: https://developer.arm.com/documentation/den0106/0100
.. _CCA Measured Boot: https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/measured_boot_integration_guide.html
.. _DICE Protection Environment: https://trustedfirmware-m.readthedocs.io/projects/tf-m-extras/en/latest/partitions/dice_protection_environment/dice_protection_environment.html
|