1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
/*
* Copyright (c) 2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <endian.h>
#include <errno.h>
#include <stdint.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32_saes.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
#define UINT8_BIT 8U
#define AES_BLOCK_SIZE_BIT 128U
#define AES_BLOCK_SIZE (AES_BLOCK_SIZE_BIT / UINT8_BIT)
#define AES_KEYSIZE_128 16U
#define AES_KEYSIZE_256 32U
#define AES_IVSIZE 16U
/* SAES control register */
#define _SAES_CR 0x0U
/* SAES status register */
#define _SAES_SR 0x04U
/* SAES data input register */
#define _SAES_DINR 0x08U
/* SAES data output register */
#define _SAES_DOUTR 0x0CU
/* SAES key registers [0-3] */
#define _SAES_KEYR0 0x10U
#define _SAES_KEYR1 0x14U
#define _SAES_KEYR2 0x18U
#define _SAES_KEYR3 0x1CU
/* SAES initialization vector registers [0-3] */
#define _SAES_IVR0 0x20U
#define _SAES_IVR1 0x24U
#define _SAES_IVR2 0x28U
#define _SAES_IVR3 0x2CU
/* SAES key registers [4-7] */
#define _SAES_KEYR4 0x30U
#define _SAES_KEYR5 0x34U
#define _SAES_KEYR6 0x38U
#define _SAES_KEYR7 0x3CU
/* SAES suspend registers [0-7] */
#define _SAES_SUSPR0 0x40U
#define _SAES_SUSPR1 0x44U
#define _SAES_SUSPR2 0x48U
#define _SAES_SUSPR3 0x4CU
#define _SAES_SUSPR4 0x50U
#define _SAES_SUSPR5 0x54U
#define _SAES_SUSPR6 0x58U
#define _SAES_SUSPR7 0x5CU
/* SAES Interrupt Enable Register */
#define _SAES_IER 0x300U
/* SAES Interrupt Status Register */
#define _SAES_ISR 0x304U
/* SAES Interrupt Clear Register */
#define _SAES_ICR 0x308U
/* SAES control register fields */
#define _SAES_CR_RESET_VALUE 0x0U
#define _SAES_CR_IPRST BIT(31)
#define _SAES_CR_KEYSEL_MASK GENMASK(30, 28)
#define _SAES_CR_KEYSEL_SHIFT 28U
#define _SAES_CR_KEYSEL_SOFT 0x0U
#define _SAES_CR_KEYSEL_DHUK 0x1U
#define _SAES_CR_KEYSEL_BHK 0x2U
#define _SAES_CR_KEYSEL_BHU_XOR_BH_K 0x4U
#define _SAES_CR_KEYSEL_TEST 0x7U
#define _SAES_CR_KSHAREID_MASK GENMASK(27, 26)
#define _SAES_CR_KSHAREID_SHIFT 26U
#define _SAES_CR_KSHAREID_CRYP 0x0U
#define _SAES_CR_KEYMOD_MASK GENMASK(25, 24)
#define _SAES_CR_KEYMOD_SHIFT 24U
#define _SAES_CR_KEYMOD_NORMAL 0x0U
#define _SAES_CR_KEYMOD_WRAPPED 0x1U
#define _SAES_CR_KEYMOD_SHARED 0x2U
#define _SAES_CR_NPBLB_MASK GENMASK(23, 20)
#define _SAES_CR_NPBLB_SHIFT 20U
#define _SAES_CR_KEYPROT BIT(19)
#define _SAES_CR_KEYSIZE BIT(18)
#define _SAES_CR_GCMPH_MASK GENMASK(14, 13)
#define _SAES_CR_GCMPH_SHIFT 13U
#define _SAES_CR_GCMPH_INIT 0U
#define _SAES_CR_GCMPH_HEADER 1U
#define _SAES_CR_GCMPH_PAYLOAD 2U
#define _SAES_CR_GCMPH_FINAL 3U
#define _SAES_CR_DMAOUTEN BIT(12)
#define _SAES_CR_DMAINEN BIT(11)
#define _SAES_CR_CHMOD_MASK (BIT(16) | GENMASK(6, 5))
#define _SAES_CR_CHMOD_SHIFT 5U
#define _SAES_CR_CHMOD_ECB 0x0U
#define _SAES_CR_CHMOD_CBC 0x1U
#define _SAES_CR_CHMOD_CTR 0x2U
#define _SAES_CR_CHMOD_GCM 0x3U
#define _SAES_CR_CHMOD_GMAC 0x3U
#define _SAES_CR_CHMOD_CCM 0x800U
#define _SAES_CR_MODE_MASK GENMASK(4, 3)
#define _SAES_CR_MODE_SHIFT 3U
#define _SAES_CR_MODE_ENC 0U
#define _SAES_CR_MODE_KEYPREP 1U
#define _SAES_CR_MODE_DEC 2U
#define _SAES_CR_DATATYPE_MASK GENMASK(2, 1)
#define _SAES_CR_DATATYPE_SHIFT 1U
#define _SAES_CR_DATATYPE_NONE 0U
#define _SAES_CR_DATATYPE_HALF_WORD 1U
#define _SAES_CR_DATATYPE_BYTE 2U
#define _SAES_CR_DATATYPE_BIT 3U
#define _SAES_CR_EN BIT(0)
/* SAES status register fields */
#define _SAES_SR_KEYVALID BIT(7)
#define _SAES_SR_BUSY BIT(3)
#define _SAES_SR_WRERR BIT(2)
#define _SAES_SR_RDERR BIT(1)
#define _SAES_SR_CCF BIT(0)
/* SAES interrupt registers fields */
#define _SAES_I_RNG_ERR BIT(3)
#define _SAES_I_KEY_ERR BIT(2)
#define _SAES_I_RW_ERR BIT(1)
#define _SAES_I_CC BIT(0)
#define SAES_TIMEOUT_US 100000U
#define TIMEOUT_US_1MS 1000U
#define SAES_RESET_DELAY 20U
#define IS_CHAINING_MODE(mod, cr) \
(((cr) & _SAES_CR_CHMOD_MASK) == (_SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT))
#define SET_CHAINING_MODE(mod, cr) \
mmio_clrsetbits_32((cr), _SAES_CR_CHMOD_MASK, _SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT)
static struct stm32_saes_platdata saes_pdata;
static int stm32_saes_parse_fdt(struct stm32_saes_platdata *pdata)
{
int node;
struct dt_node_info info;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
node = dt_get_node(&info, -1, DT_SAES_COMPAT);
if (node < 0) {
ERROR("No SAES entry in DT\n");
return -FDT_ERR_NOTFOUND;
}
if (info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
if ((info.base == 0U) || (info.clock < 0) || (info.reset < 0)) {
return -FDT_ERR_BADVALUE;
}
pdata->base = (uintptr_t)info.base;
pdata->clock_id = (unsigned long)info.clock;
pdata->reset_id = (unsigned int)info.reset;
return 0;
}
static bool does_chaining_mode_need_iv(uint32_t cr)
{
return !(IS_CHAINING_MODE(ECB, cr));
}
static bool is_encrypt(uint32_t cr)
{
return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
}
static bool is_decrypt(uint32_t cr)
{
return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
}
static int wait_computation_completed(uintptr_t base)
{
uint64_t timeout = timeout_init_us(SAES_TIMEOUT_US);
while ((mmio_read_32(base + _SAES_SR) & _SAES_SR_CCF) != _SAES_SR_CCF) {
if (timeout_elapsed(timeout)) {
WARN("%s: timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static void clear_computation_completed(uintptr_t base)
{
mmio_setbits_32(base + _SAES_ICR, _SAES_I_CC);
}
static int saes_start(struct stm32_saes_context *ctx)
{
uint64_t timeout;
/* Reset IP */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
udelay(SAES_RESET_DELAY);
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
timeout = timeout_init_us(SAES_TIMEOUT_US);
while ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_BUSY) == _SAES_SR_BUSY) {
if (timeout_elapsed(timeout)) {
WARN("%s: timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static void saes_end(struct stm32_saes_context *ctx, int prev_error)
{
if (prev_error != 0) {
/* Reset IP */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
udelay(SAES_RESET_DELAY);
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
}
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
static void saes_write_iv(struct stm32_saes_context *ctx)
{
/* If chaining mode need to restore IV */
if (does_chaining_mode_need_iv(ctx->cr)) {
uint8_t i;
/* Restore the _SAES_IVRx */
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t), ctx->iv[i]);
}
}
}
static void saes_write_key(struct stm32_saes_context *ctx)
{
/* Restore the _SAES_KEYRx if SOFTWARE key */
if ((ctx->cr & _SAES_CR_KEYSEL_MASK) == (_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT)) {
uint8_t i;
for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_KEYR0 + i * sizeof(uint32_t), ctx->key[i]);
}
if ((ctx->cr & _SAES_CR_KEYSIZE) == _SAES_CR_KEYSIZE) {
for (i = 0U; i < (AES_KEYSIZE_256 / 2U) / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_KEYR4 + i * sizeof(uint32_t),
ctx->key[i + 4U]);
}
}
}
}
static int saes_prepare_key(struct stm32_saes_context *ctx)
{
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
/* Set key size */
if ((ctx->cr & _SAES_CR_KEYSIZE) != 0U) {
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
} else {
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
}
saes_write_key(ctx);
/* For ECB/CBC decryption, key preparation mode must be selected to populate the key */
if ((IS_CHAINING_MODE(ECB, ctx->cr) || IS_CHAINING_MODE(CBC, ctx->cr)) &&
is_decrypt(ctx->cr)) {
int ret;
/* Select Mode 2 */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
_SAES_CR_MODE_KEYPREP << _SAES_CR_MODE_SHIFT);
/* Enable SAES */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
/* Wait Computation completed */
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
return ret;
}
clear_computation_completed(ctx->base);
/* Set Mode 3 */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
}
return 0;
}
static int save_context(struct stm32_saes_context *ctx)
{
if ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_CCF) != 0U) {
/* Device should not be in a processing phase */
return -EINVAL;
}
/* Save CR */
ctx->cr = mmio_read_32(ctx->base + _SAES_CR);
/* If chaining mode need to save current IV */
if (does_chaining_mode_need_iv(ctx->cr)) {
uint8_t i;
/* Save IV */
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
ctx->iv[i] = mmio_read_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t));
}
}
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
return 0;
}
/* To resume the processing of a message */
static int restore_context(struct stm32_saes_context *ctx)
{
int ret;
/* IP should be disabled */
if ((mmio_read_32(ctx->base + _SAES_CR) & _SAES_CR_EN) != 0U) {
VERBOSE("%s: Device is still enabled\n", __func__);
return -EINVAL;
}
/* Reset internal state */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
/* Restore the _SAES_CR */
mmio_write_32(ctx->base + _SAES_CR, ctx->cr);
/* Preparation decrypt key */
ret = saes_prepare_key(ctx);
if (ret != 0) {
return ret;
}
saes_write_iv(ctx);
/* Enable the SAES peripheral */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
return 0;
}
/**
* @brief Initialize SAES driver.
* @param None.
* @retval 0 if OK; negative value else.
*/
int stm32_saes_driver_init(void)
{
int err;
err = stm32_saes_parse_fdt(&saes_pdata);
if (err != 0) {
return err;
}
clk_enable(saes_pdata.clock_id);
if (stm32mp_reset_assert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
panic();
}
udelay(SAES_RESET_DELAY);
if (stm32mp_reset_deassert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
panic();
}
return 0;
}
/**
* @brief Start a AES computation.
* @param ctx: SAES process context
* @param is_dec: true if decryption, false if encryption
* @param ch_mode: define the chaining mode
* @param key_select: define where the key comes from.
* @param key: pointer to key (if key_select is KEY_SOFT, else unused)
* @param key_size: key size
* @param iv: pointer to initialization vectore (unsed if ch_mode is ECB)
* @param iv_size: iv size
* @note this function doesn't access to hardware but store in ctx the values
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_init(struct stm32_saes_context *ctx, bool is_dec,
enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select,
const void *key, size_t key_size, const void *iv, size_t iv_size)
{
unsigned int i;
const uint32_t *iv_u32;
const uint32_t *key_u32;
ctx->assoc_len = 0U;
ctx->load_len = 0U;
ctx->base = saes_pdata.base;
ctx->cr = _SAES_CR_RESET_VALUE;
/* We want buffer to be u32 aligned */
assert((uintptr_t)key % __alignof__(uint32_t) == 0);
assert((uintptr_t)iv % __alignof__(uint32_t) == 0);
iv_u32 = iv;
key_u32 = key;
if (is_dec) {
/* Save Mode 3 = decrypt */
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
} else {
/* Save Mode 1 = crypt */
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
}
/* Save chaining mode */
switch (ch_mode) {
case STM32_SAES_MODE_ECB:
SET_CHAINING_MODE(ECB, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CBC:
SET_CHAINING_MODE(CBC, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CTR:
SET_CHAINING_MODE(CTR, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_GCM:
SET_CHAINING_MODE(GCM, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CCM:
SET_CHAINING_MODE(CCM, (uintptr_t)&(ctx->cr));
break;
default:
return -EINVAL;
}
/* We will use HW Byte swap (_SAES_CR_DATATYPE_BYTE) for data.
* so we won't need to
* htobe32(data) before write to DINR
* nor
* be32toh after reading from DOUTR
*
* But note that wrap key only accept _SAES_CR_DATATYPE_NONE
*/
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_DATATYPE_MASK,
_SAES_CR_DATATYPE_BYTE << _SAES_CR_DATATYPE_SHIFT);
/* Configure keysize */
switch (key_size) {
case AES_KEYSIZE_128:
mmio_clrbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
break;
case AES_KEYSIZE_256:
mmio_setbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
break;
default:
return -EINVAL;
}
/* Configure key */
switch (key_select) {
case STM32_SAES_KEY_SOFT:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
/* Save key */
switch (key_size) {
case AES_KEYSIZE_128:
/* First 16 bytes == 4 u32 */
for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[3 - i]));
/* /!\ we save the key in HW byte order
* and word order : key[i] is for _SAES_KEYRi
*/
}
break;
case AES_KEYSIZE_256:
for (i = 0U; i < AES_KEYSIZE_256 / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[7 - i]));
/* /!\ we save the key in HW byte order
* and word order : key[i] is for _SAES_KEYRi
*/
}
break;
default:
return -EINVAL;
}
break;
case STM32_SAES_KEY_DHU:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_DHUK << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_BH:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_BHK << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_BHU_XOR_BH:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_BHU_XOR_BH_K << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_WRAPPED:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
break;
default:
return -EINVAL;
}
/* Save IV */
if (ch_mode != STM32_SAES_MODE_ECB) {
if ((iv == NULL) || (iv_size != AES_IVSIZE)) {
return -EINVAL;
}
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->iv + i), htobe32(iv_u32[3 - i]));
/* /!\ We save the iv in HW byte order */
}
}
return saes_start(ctx);
}
/**
* @brief Update (or start) a AES authentificate process of associated data (CCM or GCM).
* @param ctx: SAES process context
* @param last_block: true if last assoc data block
* @param data: pointer to associated data
* @param data_size: data size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data, size_t data_size)
{
int ret;
uint32_t *data_u32;
unsigned int i = 0U;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data % __alignof__(uint32_t) == 0);
data_u32 = (uint32_t *)data;
/* Init phase */
ret = restore_context(ctx);
if (ret != 0) {
goto out;
}
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
return ret;
}
clear_computation_completed(ctx->base);
if ((data == NULL) || (data_size == 0U)) {
/* No associated data */
/* ret already = 0 */
goto out;
}
/* There is an header/associated data phase */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_HEADER << _SAES_CR_GCMPH_SHIFT);
/* Enable the SAES peripheral */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
ctx->assoc_len += AES_BLOCK_SIZE_BIT;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
/* We don't manage unaligned last block yet */
ret = -ENODEV;
goto out;
}
out:
if (ret != 0) {
saes_end(ctx, ret);
}
return ret;
}
/**
* @brief Update (or start) a AES authenticate and de/encrypt with payload data (CCM or GCM).
* @param ctx: SAES process context
* @param last_block: true if last payload data block
* @param data_in: pointer to payload
* @param data_out: pointer where to save de/encrypted payload
* @param data_size: payload size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_size)
{
int ret = 0;
uint32_t *data_in_u32;
uint32_t *data_out_u32;
unsigned int i = 0U;
uint32_t prev_cr;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
data_in_u32 = (uint32_t *)data_in;
data_out_u32 = (uint32_t *)data_out;
prev_cr = mmio_read_32(ctx->base + _SAES_CR);
if ((data_in == NULL) || (data_size == 0U)) {
/* there is no data */
goto out;
}
/* There is a load phase */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_PAYLOAD << _SAES_CR_GCMPH_SHIFT);
if ((prev_cr & _SAES_CR_GCMPH_MASK) ==
(_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
/* Still in initialization phase, no header
* We need to enable the SAES peripheral
*/
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
ctx->load_len += AES_BLOCK_SIZE_BIT;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
uint32_t block_in[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
uint32_t block_out[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
memcpy(block_in, data_in + i, data_size - i);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, block_in[0U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[1U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[2U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
VERBOSE("%s %d\n", __func__, __LINE__);
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
block_out[0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
memcpy(data_out + i, block_out, data_size - i);
ctx->load_len += (data_size - i) * UINT8_BIT;
}
out:
if (ret != 0) {
saes_end(ctx, ret);
}
return ret;
}
/**
* @brief Get authentication tag for AES authenticated algorithms (CCM or GCM).
* @param ctx: SAES process context
* @param tag: pointer where to save the tag
* @param data_size: tag size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag,
size_t tag_size)
{
int ret;
uint32_t tag_u32[4];
uint32_t prev_cr;
prev_cr = mmio_read_32(ctx->base + _SAES_CR);
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_FINAL << _SAES_CR_GCMPH_SHIFT);
if ((prev_cr & _SAES_CR_GCMPH_MASK) == (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
/* Still in initialization phase, no header
* We need to enable the SAES peripheral
*/
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, 0);
mmio_write_32(ctx->base + _SAES_DINR, ctx->assoc_len);
mmio_write_32(ctx->base + _SAES_DINR, 0);
mmio_write_32(ctx->base + _SAES_DINR, ctx->load_len);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
tag_u32[0] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[1] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[2] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[3] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
memcpy(tag, tag_u32, MIN(sizeof(tag_u32), tag_size));
out:
saes_end(ctx, ret);
return ret;
}
/**
* @brief Update (or start) a AES de/encrypt process (ECB, CBC or CTR).
* @param ctx: SAES process context
* @param last_block: true if last payload data block
* @param data_in: pointer to payload
* @param data_out: pointer where to save de/encrypted payload
* @param data_size: payload size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_size)
{
int ret;
uint32_t *data_in_u32;
uint32_t *data_out_u32;
unsigned int i = 0U;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
data_in_u32 = (uint32_t *)data_in;
data_out_u32 = (uint32_t *)data_out;
if ((!last_block) &&
(round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
ERROR("%s: non last block must be multiple of 128 bits\n",
__func__);
ret = -EINVAL;
goto out;
}
/* In CBC encryption we need to manage specifically last 2 128bits
* blocks if total size in not a block size aligned
* work TODO. Currently return ENODEV.
* Morevoer as we need to know last 2 block, if unaligned and
* call with less than two block, return -EINVAL.
*/
if (last_block && IS_CHAINING_MODE(CBC, ctx->cr) && is_encrypt(ctx->cr) &&
(round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
if (data_size < AES_BLOCK_SIZE * 2U) {
ERROR("if CBC, last part size should be at least 2 * AES_BLOCK_SIZE\n");
ret = -EINVAL;
goto out;
}
/* Moreover the CBC specific padding for encrypt is not yet implemented */
ret = -ENODEV;
goto out;
}
ret = restore_context(ctx);
if (ret != 0) {
goto out;
}
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
/* In and out buffer have same size so should be AES_BLOCK_SIZE multiple */
ret = -ENODEV;
goto out;
}
if (!last_block) {
ret = save_context(ctx);
}
out:
/* If last block or error, end of SAES process */
if (last_block || (ret != 0)) {
saes_end(ctx, ret);
}
return ret;
}
|