1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/*
* Copyright (C) 2021-2024, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <errno.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/st/stm32mp2_ddr.h>
#include <drivers/st/stm32mp2_ddr_helpers.h>
#include <drivers/st/stm32mp2_ram.h>
#include <drivers/st/stm32mp_ddr.h>
#include <drivers/st/stm32mp_ddr_test.h>
#include <drivers/st/stm32mp_ram.h>
#include <lib/mmio.h>
#include <libfdt.h>
#include <platform_def.h>
static struct stm32mp_ddr_priv ddr_priv_data;
static bool ddr_self_refresh;
static int ddr_dt_get_ui_param(void *fdt, int node, struct stm32mp_ddr_config *config)
{
int ret;
uint32_t size;
size = sizeof(struct user_input_basic) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-basic", size, (uint32_t *)&config->uib);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-basic", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-basic", ret);
return -EINVAL;
}
size = sizeof(struct user_input_advanced) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-advanced", size, (uint32_t *)&config->uia);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-advanced", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-advanced", ret);
return -EINVAL;
}
size = sizeof(struct user_input_mode_register) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-mr", size, (uint32_t *)&config->uim);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-mr", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-mr", ret);
return -EINVAL;
}
size = sizeof(struct user_input_swizzle) / sizeof(int);
ret = fdt_read_uint32_array(fdt, node, "st,phy-swizzle", size, (uint32_t *)&config->uis);
VERBOSE("%s: %s[0x%x] = %d\n", __func__, "st,phy-swizzle", size, ret);
if (ret != 0) {
ERROR("%s: can't read %s, error=%d\n", __func__, "st,phy-swizzle", ret);
return -EINVAL;
}
return 0;
}
static int stm32mp2_ddr_setup(void)
{
struct stm32mp_ddr_priv *priv = &ddr_priv_data;
int ret;
struct stm32mp_ddr_config config;
int node;
uintptr_t uret;
void *fdt;
const struct stm32mp_ddr_param param[] = {
CTL_PARAM(reg),
CTL_PARAM(timing),
CTL_PARAM(map),
CTL_PARAM(perf)
};
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_DDR_COMPAT);
if (node < 0) {
ERROR("%s: can't read DDR node in DT\n", __func__);
return -EINVAL;
}
ret = stm32mp_ddr_dt_get_info(fdt, node, &config.info);
if (ret < 0) {
return ret;
}
ret = stm32mp_ddr_dt_get_param(fdt, node, param, ARRAY_SIZE(param), (uintptr_t)&config);
if (ret < 0) {
return ret;
}
ret = ddr_dt_get_ui_param(fdt, node, &config);
if (ret < 0) {
return ret;
}
config.self_refresh = false;
if (stm32mp_is_wakeup_from_standby()) {
config.self_refresh = true;
}
/* Map dynamically RETRAM area to save or restore PHY retention registers */
if (stm32mp_map_retram() != 0) {
panic();
}
stm32mp2_ddr_init(priv, &config);
/* Unmap RETRAM, no more used until next DDR initialization call */
if (stm32mp_unmap_retram() != 0) {
panic();
}
priv->info.size = config.info.size;
VERBOSE("%s : ram size(%lx, %lx)\n", __func__, priv->info.base, priv->info.size);
if (stm32mp_map_ddr_non_cacheable() != 0) {
panic();
}
if (config.self_refresh) {
uret = stm32mp_ddr_test_rw_access();
if (uret != 0UL) {
ERROR("DDR rw test: can't access memory @ 0x%lx\n", uret);
panic();
}
/* TODO Restore area overwritten by training */
//stm32_restore_ddr_training_area();
} else {
size_t retsize;
uret = stm32mp_ddr_test_data_bus();
if (uret != 0UL) {
ERROR("DDR data bus test: can't access memory @ 0x%lx\n", uret);
panic();
}
uret = stm32mp_ddr_test_addr_bus(config.info.size);
if (uret != 0UL) {
ERROR("DDR addr bus test: can't access memory @ 0x%lx\n", uret);
panic();
}
retsize = stm32mp_ddr_check_size();
if (retsize < config.info.size) {
ERROR("DDR size: 0x%zx does not match DT config: 0x%zx\n",
retsize, config.info.size);
panic();
}
INFO("Memory size = 0x%zx (%zu MB)\n", retsize, retsize / (1024U * 1024U));
}
/*
* Initialization sequence has configured DDR registers with settings.
* The Self Refresh (SR) mode corresponding to these settings has now
* to be set.
*/
ddr_set_sr_mode(ddr_read_sr_mode());
if (stm32mp_unmap_ddr() != 0) {
panic();
}
/* Save DDR self_refresh state */
ddr_self_refresh = config.self_refresh;
return 0;
}
bool stm32mp2_ddr_is_restored(void)
{
return ddr_self_refresh;
}
int stm32mp2_ddr_probe(void)
{
struct stm32mp_ddr_priv *priv = &ddr_priv_data;
VERBOSE("STM32MP DDR probe\n");
priv->ctl = (struct stm32mp_ddrctl *)stm32mp_ddrctrl_base();
priv->phy = (struct stm32mp_ddrphy *)stm32mp_ddrphyc_base();
priv->pwr = stm32mp_pwr_base();
priv->rcc = stm32mp_rcc_base();
priv->info.base = STM32MP_DDR_BASE;
priv->info.size = 0;
return stm32mp2_ddr_setup();
}
|