1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
* Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
* Portions copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdbool.h>
#include <bl31/interrupt_mgmt.h>
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv2.h>
#include <plat/common/platform.h>
/*
* The following platform GIC functions are weakly defined. They
* provide typical implementations that may be re-used by multiple
* platforms but may also be overridden by a platform if required.
*/
#pragma weak plat_ic_get_pending_interrupt_id
#pragma weak plat_ic_get_pending_interrupt_type
#pragma weak plat_ic_acknowledge_interrupt
#pragma weak plat_ic_get_interrupt_type
#pragma weak plat_ic_end_of_interrupt
#pragma weak plat_interrupt_type_to_line
#pragma weak plat_ic_get_running_priority
#pragma weak plat_ic_is_spi
#pragma weak plat_ic_is_ppi
#pragma weak plat_ic_is_sgi
#pragma weak plat_ic_get_interrupt_active
#pragma weak plat_ic_enable_interrupt
#pragma weak plat_ic_disable_interrupt
#pragma weak plat_ic_set_interrupt_priority
#pragma weak plat_ic_set_interrupt_type
#pragma weak plat_ic_raise_el3_sgi
#pragma weak plat_ic_raise_ns_sgi
#pragma weak plat_ic_raise_s_el1_sgi
#pragma weak plat_ic_set_spi_routing
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller
*/
uint32_t plat_ic_get_pending_interrupt_id(void)
{
unsigned int id;
id = gicv2_get_pending_interrupt_id();
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_ID_UNAVAILABLE;
return id;
}
/*
* This function returns the type of the highest priority pending interrupt
* at the Interrupt controller. In the case of GICv2, the Highest Priority
* Pending interrupt register (`GICC_HPPIR`) is read to determine the id of
* the pending interrupt. The type of interrupt depends upon the id value
* as follows.
* 1. id < PENDING_G1_INTID (1022) is reported as a S-EL1 interrupt
* 2. id = PENDING_G1_INTID (1022) is reported as a Non-secure interrupt.
* 3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
* type.
*/
uint32_t plat_ic_get_pending_interrupt_type(void)
{
unsigned int id;
id = gicv2_get_pending_interrupt_type();
/* Assume that all secure interrupts are S-EL1 interrupts */
if (id < PENDING_G1_INTID) {
#if GICV2_G0_FOR_EL3
return INTR_TYPE_EL3;
#else
return INTR_TYPE_S_EL1;
#endif
}
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_TYPE_INVAL;
return INTR_TYPE_NS;
}
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller and indicates to the Interrupt controller
* that the interrupt processing has started.
*/
uint32_t plat_ic_acknowledge_interrupt(void)
{
return gicv2_acknowledge_interrupt();
}
/*
* This function returns the type of the interrupt `id`, depending on how
* the interrupt has been configured in the interrupt controller
*/
uint32_t plat_ic_get_interrupt_type(uint32_t id)
{
unsigned int type;
type = gicv2_get_interrupt_group(id);
/* Assume that all secure interrupts are S-EL1 interrupts */
return (type == GICV2_INTR_GROUP1) ? INTR_TYPE_NS :
#if GICV2_G0_FOR_EL3
INTR_TYPE_EL3;
#else
INTR_TYPE_S_EL1;
#endif
}
/*
* This functions is used to indicate to the interrupt controller that
* the processing of the interrupt corresponding to the `id` has
* finished.
*/
void plat_ic_end_of_interrupt(uint32_t id)
{
gicv2_end_of_interrupt(id);
}
/*
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. It lets the interrupt management framework determine
* for a type of interrupt and security state, which line should be used in the
* SCR_EL3 to control its routing to EL3. The interrupt line is represented
* as the bit position of the IRQ or FIQ bit in the SCR_EL3.
*/
uint32_t plat_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
assert((type == INTR_TYPE_S_EL1) || (type == INTR_TYPE_EL3) ||
(type == INTR_TYPE_NS));
assert(sec_state_is_valid(security_state));
/* Non-secure interrupts are signaled on the IRQ line always */
if (type == INTR_TYPE_NS)
return __builtin_ctz(SCR_IRQ_BIT);
/*
* Secure interrupts are signaled using the IRQ line if the FIQ is
* not enabled else they are signaled using the FIQ line.
*/
return ((gicv2_is_fiq_enabled() != 0U) ? __builtin_ctz(SCR_FIQ_BIT) :
__builtin_ctz(SCR_IRQ_BIT));
}
unsigned int plat_ic_get_running_priority(void)
{
return gicv2_get_running_priority();
}
int plat_ic_is_spi(unsigned int id)
{
return (id >= MIN_SPI_ID) && (id <= MAX_SPI_ID);
}
int plat_ic_is_ppi(unsigned int id)
{
return (id >= MIN_PPI_ID) && (id < MIN_SPI_ID);
}
int plat_ic_is_sgi(unsigned int id)
{
return (id >= MIN_SGI_ID) && (id < MIN_PPI_ID);
}
unsigned int plat_ic_get_interrupt_active(unsigned int id)
{
return gicv2_get_interrupt_active(id);
}
void plat_ic_enable_interrupt(unsigned int id)
{
gicv2_enable_interrupt(id);
}
void plat_ic_disable_interrupt(unsigned int id)
{
gicv2_disable_interrupt(id);
}
void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority)
{
gicv2_set_interrupt_priority(id, priority);
}
bool plat_ic_has_interrupt_type(unsigned int type)
{
bool has_interrupt_type = false;
switch (type) {
#if GICV2_G0_FOR_EL3
case INTR_TYPE_EL3:
#else
case INTR_TYPE_S_EL1:
#endif
case INTR_TYPE_NS:
has_interrupt_type = true;
break;
default:
/* Do nothing in default case */
break;
}
return has_interrupt_type;
}
void plat_ic_set_interrupt_type(unsigned int id, unsigned int type)
{
unsigned int gicv2_group = 0U;
/* Map canonical interrupt type to GICv2 type */
switch (type) {
#if GICV2_G0_FOR_EL3
case INTR_TYPE_EL3:
#else
case INTR_TYPE_S_EL1:
#endif
gicv2_group = GICV2_INTR_GROUP0;
break;
case INTR_TYPE_NS:
gicv2_group = GICV2_INTR_GROUP1;
break;
default:
assert(false); /* Unreachable */
break;
}
gicv2_set_interrupt_group(id, gicv2_group);
}
void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target)
{
#if GICV2_G0_FOR_EL3
int id;
/* Target must be a valid MPIDR in the system */
id = plat_core_pos_by_mpidr(target);
assert(id >= 0);
/* Verify that this is a secure SGI */
assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_EL3);
gicv2_raise_sgi(sgi_num, false, id);
#else
assert(false);
#endif
}
void plat_ic_raise_ns_sgi(int sgi_num, u_register_t target)
{
int id;
/* Target must be a valid MPIDR in the system */
id = plat_core_pos_by_mpidr(target);
assert(id >= 0);
/* Verify that this is a non-secure SGI */
assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_NS);
gicv2_raise_sgi(sgi_num, true, id);
}
void plat_ic_raise_s_el1_sgi(int sgi_num, u_register_t target)
{
#if GICV2_G0_FOR_EL3
assert(false);
#else
int id;
/* Target must be a valid MPIDR in the system */
id = plat_core_pos_by_mpidr(target);
assert(id >= 0);
/* Verify that this is a secure EL1 SGI */
assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_S_EL1);
gicv2_raise_sgi(sgi_num, false, id);
#endif
}
void plat_ic_set_spi_routing(unsigned int id, unsigned int routing_mode,
u_register_t mpidr)
{
int proc_num = 0;
switch (routing_mode) {
case INTR_ROUTING_MODE_PE:
proc_num = plat_core_pos_by_mpidr(mpidr);
assert(proc_num >= 0);
break;
case INTR_ROUTING_MODE_ANY:
/* Bit mask selecting all 8 CPUs as candidates */
proc_num = -1;
break;
default:
assert(0); /* Unreachable */
break;
}
gicv2_set_spi_routing(id, proc_num);
}
void plat_ic_set_interrupt_pending(unsigned int id)
{
gicv2_set_interrupt_pending(id);
}
void plat_ic_clear_interrupt_pending(unsigned int id)
{
gicv2_clear_interrupt_pending(id);
}
unsigned int plat_ic_set_priority_mask(unsigned int mask)
{
return gicv2_set_pmr(mask);
}
unsigned int plat_ic_get_interrupt_id(unsigned int raw)
{
unsigned int id = (raw & INT_ID_MASK);
if (id == GIC_SPURIOUS_INTERRUPT)
id = INTR_ID_UNAVAILABLE;
return id;
}
|