1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
/*
* Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
*/
#include <inttypes.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/spi_mem.h>
#include <drivers/st/stm32_gpio.h>
#include <drivers/st/stm32_qspi.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
/* Timeout for device interface reset */
#define TIMEOUT_US_1_MS 1000U
/* QUADSPI registers */
#define QSPI_CR 0x00U
#define QSPI_DCR 0x04U
#define QSPI_SR 0x08U
#define QSPI_FCR 0x0CU
#define QSPI_DLR 0x10U
#define QSPI_CCR 0x14U
#define QSPI_AR 0x18U
#define QSPI_ABR 0x1CU
#define QSPI_DR 0x20U
#define QSPI_PSMKR 0x24U
#define QSPI_PSMAR 0x28U
#define QSPI_PIR 0x2CU
#define QSPI_LPTR 0x30U
/* QUADSPI control register */
#define QSPI_CR_EN BIT(0)
#define QSPI_CR_ABORT BIT(1)
#define QSPI_CR_DMAEN BIT(2)
#define QSPI_CR_TCEN BIT(3)
#define QSPI_CR_SSHIFT BIT(4)
#define QSPI_CR_DFM BIT(6)
#define QSPI_CR_FSEL BIT(7)
#define QSPI_CR_FTHRES_SHIFT 8U
#define QSPI_CR_TEIE BIT(16)
#define QSPI_CR_TCIE BIT(17)
#define QSPI_CR_FTIE BIT(18)
#define QSPI_CR_SMIE BIT(19)
#define QSPI_CR_TOIE BIT(20)
#define QSPI_CR_APMS BIT(22)
#define QSPI_CR_PMM BIT(23)
#define QSPI_CR_PRESCALER_MASK GENMASK_32(31, 24)
#define QSPI_CR_PRESCALER_SHIFT 24U
/* QUADSPI device configuration register */
#define QSPI_DCR_CKMODE BIT(0)
#define QSPI_DCR_CSHT_MASK GENMASK_32(10, 8)
#define QSPI_DCR_CSHT_SHIFT 8U
#define QSPI_DCR_FSIZE_MASK GENMASK_32(20, 16)
#define QSPI_DCR_FSIZE_SHIFT 16U
/* QUADSPI status register */
#define QSPI_SR_TEF BIT(0)
#define QSPI_SR_TCF BIT(1)
#define QSPI_SR_FTF BIT(2)
#define QSPI_SR_SMF BIT(3)
#define QSPI_SR_TOF BIT(4)
#define QSPI_SR_BUSY BIT(5)
/* QUADSPI flag clear register */
#define QSPI_FCR_CTEF BIT(0)
#define QSPI_FCR_CTCF BIT(1)
#define QSPI_FCR_CSMF BIT(3)
#define QSPI_FCR_CTOF BIT(4)
/* QUADSPI communication configuration register */
#define QSPI_CCR_DDRM BIT(31)
#define QSPI_CCR_DHHC BIT(30)
#define QSPI_CCR_SIOO BIT(28)
#define QSPI_CCR_FMODE_SHIFT 26U
#define QSPI_CCR_DMODE_SHIFT 24U
#define QSPI_CCR_DCYC_SHIFT 18U
#define QSPI_CCR_ABSIZE_SHIFT 16U
#define QSPI_CCR_ABMODE_SHIFT 14U
#define QSPI_CCR_ADSIZE_SHIFT 12U
#define QSPI_CCR_ADMODE_SHIFT 10U
#define QSPI_CCR_IMODE_SHIFT 8U
#define QSPI_CCR_IND_WRITE 0U
#define QSPI_CCR_IND_READ 1U
#define QSPI_CCR_MEM_MAP 3U
#define QSPI_MAX_CHIP 2U
#define QSPI_FIFO_TIMEOUT_US 30U
#define QSPI_CMD_TIMEOUT_US 1000U
#define QSPI_BUSY_TIMEOUT_US 100U
#define QSPI_ABT_TIMEOUT_US 100U
#define DT_QSPI_COMPAT "st,stm32f469-qspi"
#define FREQ_100MHZ 100000000U
struct stm32_qspi_ctrl {
uintptr_t reg_base;
uintptr_t mm_base;
size_t mm_size;
unsigned long clock_id;
unsigned int reset_id;
};
static struct stm32_qspi_ctrl stm32_qspi;
static uintptr_t qspi_base(void)
{
return stm32_qspi.reg_base;
}
static int stm32_qspi_wait_for_not_busy(void)
{
uint64_t timeout = timeout_init_us(QSPI_BUSY_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_BUSY) != 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: busy timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static int stm32_qspi_wait_cmd(const struct spi_mem_op *op)
{
int ret = 0;
uint64_t timeout;
timeout = timeout_init_us(QSPI_CMD_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TCF) == 0U) {
if (timeout_elapsed(timeout)) {
ret = -ETIMEDOUT;
break;
}
}
if (ret == 0) {
if ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TEF) != 0U) {
ERROR("%s: transfer error\n", __func__);
ret = -EIO;
}
} else {
ERROR("%s: cmd timeout\n", __func__);
}
/* Clear flags */
mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF | QSPI_FCR_CTEF);
if (ret == 0) {
ret = stm32_qspi_wait_for_not_busy();
}
return ret;
}
static void stm32_qspi_read_fifo(uint8_t *val, uintptr_t addr)
{
*val = mmio_read_8(addr);
}
static void stm32_qspi_write_fifo(uint8_t *val, uintptr_t addr)
{
mmio_write_8(addr, *val);
}
static int stm32_qspi_poll(const struct spi_mem_op *op)
{
void (*fifo)(uint8_t *val, uintptr_t addr);
uint32_t len;
uint8_t *buf;
if (op->data.dir == SPI_MEM_DATA_IN) {
fifo = stm32_qspi_read_fifo;
} else {
fifo = stm32_qspi_write_fifo;
}
buf = (uint8_t *)op->data.buf;
for (len = op->data.nbytes; len != 0U; len--) {
uint64_t timeout = timeout_init_us(QSPI_FIFO_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_SR) &
QSPI_SR_FTF) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: fifo timeout\n", __func__);
return -ETIMEDOUT;
}
}
fifo(buf++, qspi_base() + QSPI_DR);
}
return 0;
}
static int stm32_qspi_mm(const struct spi_mem_op *op)
{
memcpy(op->data.buf,
(void *)(stm32_qspi.mm_base + (size_t)op->addr.val),
op->data.nbytes);
return 0;
}
static int stm32_qspi_tx(const struct spi_mem_op *op, uint8_t mode)
{
if (op->data.nbytes == 0U) {
return 0;
}
if (mode == QSPI_CCR_MEM_MAP) {
return stm32_qspi_mm(op);
}
return stm32_qspi_poll(op);
}
static unsigned int stm32_qspi_get_mode(uint8_t buswidth)
{
if (buswidth == 4U) {
return 3U;
}
return buswidth;
}
static int stm32_qspi_exec_op(const struct spi_mem_op *op)
{
uint64_t timeout;
uint32_t ccr;
size_t addr_max;
uint8_t mode = QSPI_CCR_IND_WRITE;
int ret;
VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addr:%" PRIx64 " len:%x\n",
__func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
addr_max = op->addr.val + op->data.nbytes + 1U;
if ((op->data.dir == SPI_MEM_DATA_IN) && (op->data.nbytes != 0U)) {
if ((addr_max < stm32_qspi.mm_size) &&
(op->addr.buswidth != 0U)) {
mode = QSPI_CCR_MEM_MAP;
} else {
mode = QSPI_CCR_IND_READ;
}
}
if (op->data.nbytes != 0U) {
mmio_write_32(qspi_base() + QSPI_DLR, op->data.nbytes - 1U);
}
ccr = mode << QSPI_CCR_FMODE_SHIFT;
ccr |= op->cmd.opcode;
ccr |= stm32_qspi_get_mode(op->cmd.buswidth) << QSPI_CCR_IMODE_SHIFT;
if (op->addr.nbytes != 0U) {
ccr |= (op->addr.nbytes - 1U) << QSPI_CCR_ADSIZE_SHIFT;
ccr |= stm32_qspi_get_mode(op->addr.buswidth) <<
QSPI_CCR_ADMODE_SHIFT;
}
if ((op->dummy.buswidth != 0U) && (op->dummy.nbytes != 0U)) {
ccr |= (op->dummy.nbytes * 8U / op->dummy.buswidth) <<
QSPI_CCR_DCYC_SHIFT;
}
if (op->data.nbytes != 0U) {
ccr |= stm32_qspi_get_mode(op->data.buswidth) <<
QSPI_CCR_DMODE_SHIFT;
}
mmio_write_32(qspi_base() + QSPI_CCR, ccr);
if ((op->addr.nbytes != 0U) && (mode != QSPI_CCR_MEM_MAP)) {
mmio_write_32(qspi_base() + QSPI_AR, op->addr.val);
}
ret = stm32_qspi_tx(op, mode);
/*
* Abort in:
* - Error case.
* - Memory mapped read: prefetching must be stopped if we read the last
* byte of device (device size - fifo size). If device size is not
* known then prefetching is always stopped.
*/
if ((ret != 0) || (mode == QSPI_CCR_MEM_MAP)) {
goto abort;
}
/* Wait end of TX in indirect mode */
ret = stm32_qspi_wait_cmd(op);
if (ret != 0) {
goto abort;
}
return 0;
abort:
mmio_setbits_32(qspi_base() + QSPI_CR, QSPI_CR_ABORT);
/* Wait clear of abort bit by hardware */
timeout = timeout_init_us(QSPI_ABT_TIMEOUT_US);
while ((mmio_read_32(qspi_base() + QSPI_CR) & QSPI_CR_ABORT) != 0U) {
if (timeout_elapsed(timeout)) {
ret = -ETIMEDOUT;
break;
}
}
mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF);
if (ret != 0) {
ERROR("%s: exec op error\n", __func__);
}
return ret;
}
static int stm32_qspi_claim_bus(unsigned int cs)
{
uint32_t cr;
if (cs >= QSPI_MAX_CHIP) {
return -ENODEV;
}
/* Set chip select and enable the controller */
cr = QSPI_CR_EN;
if (cs == 1U) {
cr |= QSPI_CR_FSEL;
}
mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_FSEL, cr);
return 0;
}
static void stm32_qspi_release_bus(void)
{
mmio_clrbits_32(qspi_base() + QSPI_CR, QSPI_CR_EN);
}
static int stm32_qspi_set_speed(unsigned int hz)
{
unsigned long qspi_clk = clk_get_rate(stm32_qspi.clock_id);
uint32_t prescaler = UINT8_MAX;
uint32_t csht;
int ret;
if (qspi_clk == 0U) {
return -EINVAL;
}
if (hz > 0U) {
prescaler = div_round_up(qspi_clk, hz) - 1U;
if (prescaler > UINT8_MAX) {
prescaler = UINT8_MAX;
}
}
csht = div_round_up((5U * qspi_clk) / (prescaler + 1U), FREQ_100MHZ);
csht = ((csht - 1U) << QSPI_DCR_CSHT_SHIFT) & QSPI_DCR_CSHT_MASK;
ret = stm32_qspi_wait_for_not_busy();
if (ret != 0) {
return ret;
}
mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_PRESCALER_MASK,
prescaler << QSPI_CR_PRESCALER_SHIFT);
mmio_clrsetbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CSHT_MASK, csht);
VERBOSE("%s: speed=%lu\n", __func__, qspi_clk / (prescaler + 1U));
return 0;
}
static int stm32_qspi_set_mode(unsigned int mode)
{
int ret;
ret = stm32_qspi_wait_for_not_busy();
if (ret != 0) {
return ret;
}
if ((mode & SPI_CS_HIGH) != 0U) {
return -ENODEV;
}
if (((mode & SPI_CPHA) != 0U) && ((mode & SPI_CPOL) != 0U)) {
mmio_setbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
} else if (((mode & SPI_CPHA) == 0U) && ((mode & SPI_CPOL) == 0U)) {
mmio_clrbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
} else {
return -ENODEV;
}
VERBOSE("%s: mode=0x%x\n", __func__, mode);
if ((mode & SPI_RX_QUAD) != 0U) {
VERBOSE("rx: quad\n");
} else if ((mode & SPI_RX_DUAL) != 0U) {
VERBOSE("rx: dual\n");
} else {
VERBOSE("rx: single\n");
}
if ((mode & SPI_TX_QUAD) != 0U) {
VERBOSE("tx: quad\n");
} else if ((mode & SPI_TX_DUAL) != 0U) {
VERBOSE("tx: dual\n");
} else {
VERBOSE("tx: single\n");
}
return 0;
}
static const struct spi_bus_ops stm32_qspi_bus_ops = {
.claim_bus = stm32_qspi_claim_bus,
.release_bus = stm32_qspi_release_bus,
.set_speed = stm32_qspi_set_speed,
.set_mode = stm32_qspi_set_mode,
.exec_op = stm32_qspi_exec_op,
};
int stm32_qspi_init(void)
{
size_t size;
int qspi_node;
struct dt_node_info info;
void *fdt = NULL;
int ret;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
qspi_node = dt_get_node(&info, -1, DT_QSPI_COMPAT);
if (qspi_node < 0) {
ERROR("No QSPI ctrl found\n");
return -FDT_ERR_NOTFOUND;
}
if (info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi",
&stm32_qspi.reg_base, &size);
if (ret != 0) {
return ret;
}
ret = fdt_get_reg_props_by_name(fdt, qspi_node, "qspi_mm",
&stm32_qspi.mm_base,
&stm32_qspi.mm_size);
if (ret != 0) {
return ret;
}
if (dt_set_pinctrl_config(qspi_node) != 0) {
return -FDT_ERR_BADVALUE;
}
if ((info.clock < 0) || (info.reset < 0)) {
return -FDT_ERR_BADVALUE;
}
stm32_qspi.clock_id = (unsigned long)info.clock;
stm32_qspi.reset_id = (unsigned int)info.reset;
clk_enable(stm32_qspi.clock_id);
ret = stm32mp_reset_assert(stm32_qspi.reset_id, TIMEOUT_US_1_MS);
if (ret != 0) {
panic();
}
ret = stm32mp_reset_deassert(stm32_qspi.reset_id, TIMEOUT_US_1_MS);
if (ret != 0) {
panic();
}
mmio_write_32(qspi_base() + QSPI_CR, QSPI_CR_SSHIFT);
mmio_write_32(qspi_base() + QSPI_DCR, QSPI_DCR_FSIZE_MASK);
return spi_mem_init_slave(fdt, qspi_node, &stm32_qspi_bus_ops);
};
|