1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
|
/*
* Copyright (c) 2022, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include "gpt_rme_private.h"
#include <lib/gpt_rme/gpt_rme.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#if !ENABLE_RME
#error "ENABLE_RME must be enabled to use the GPT library."
#endif
/*
* Lookup T from PPS
*
* PPS Size T
* 0b000 4GB 32
* 0b001 64GB 36
* 0b010 1TB 40
* 0b011 4TB 42
* 0b100 16TB 44
* 0b101 256TB 48
* 0b110 4PB 52
*
* See section 15.1.27 of the RME specification.
*/
static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
PPS_1TB_T, PPS_4TB_T,
PPS_16TB_T, PPS_256TB_T,
PPS_4PB_T};
/*
* Lookup P from PGS
*
* PGS Size P
* 0b00 4KB 12
* 0b10 16KB 14
* 0b01 64KB 16
*
* Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
*
* See section 15.1.27 of the RME specification.
*/
static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
/*
* This structure contains GPT configuration data.
*/
typedef struct {
uintptr_t plat_gpt_l0_base;
gpccr_pps_e pps;
gpt_t_val_e t;
gpccr_pgs_e pgs;
gpt_p_val_e p;
} gpt_config_t;
static gpt_config_t gpt_config;
/* These variables are used during initialization of the L1 tables. */
static unsigned int gpt_next_l1_tbl_idx;
static uintptr_t gpt_l1_tbl;
/*
* This function checks to see if a GPI value is valid.
*
* These are valid GPI values.
* GPT_GPI_NO_ACCESS U(0x0)
* GPT_GPI_SECURE U(0x8)
* GPT_GPI_NS U(0x9)
* GPT_GPI_ROOT U(0xA)
* GPT_GPI_REALM U(0xB)
* GPT_GPI_ANY U(0xF)
*
* Parameters
* gpi GPI to check for validity.
*
* Return
* true for a valid GPI, false for an invalid one.
*/
static bool gpt_is_gpi_valid(unsigned int gpi)
{
if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
return true;
}
return false;
}
/*
* This function checks to see if two PAS regions overlap.
*
* Parameters
* base_1: base address of first PAS
* size_1: size of first PAS
* base_2: base address of second PAS
* size_2: size of second PAS
*
* Return
* True if PAS regions overlap, false if they do not.
*/
static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1,
uintptr_t base_2, size_t size_2)
{
if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
return true;
}
return false;
}
/*
* This helper function checks to see if a PAS region from index 0 to
* (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
*
* Parameters
* l0_idx: Index of the L0 entry to check
* pas_regions: PAS region array
* pas_idx: Upper bound of the PAS array index.
*
* Return
* True if a PAS region occupies the L0 region in question, false if not.
*/
static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx,
pas_region_t *pas_regions,
unsigned int pas_idx)
{
/* Iterate over PAS regions up to pas_idx. */
for (unsigned int i = 0U; i < pas_idx; i++) {
if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
GPT_L0GPTSZ_ACTUAL_SIZE,
pas_regions[i].base_pa, pas_regions[i].size)) {
return true;
}
}
return false;
}
/*
* This function iterates over all of the PAS regions and checks them to ensure
* proper alignment of base and size, that the GPI is valid, and that no regions
* overlap. As a part of the overlap checks, this function checks existing L0
* mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
* is called multiple times to place L1 tables in different areas of memory. It
* also counts the number of L1 tables needed and returns it on success.
*
* Parameters
* *pas_regions Pointer to array of PAS region structures.
* pas_region_cnt Total number of PAS regions in the array.
*
* Return
* Negative Linux error code in the event of a failure, number of L1 regions
* required when successful.
*/
static int gpt_validate_pas_mappings(pas_region_t *pas_regions,
unsigned int pas_region_cnt)
{
unsigned int idx;
unsigned int l1_cnt = 0U;
unsigned int pas_l1_cnt;
uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
assert(pas_regions != NULL);
assert(pas_region_cnt != 0U);
for (idx = 0U; idx < pas_region_cnt; idx++) {
/* Check for arithmetic overflow in region. */
if ((ULONG_MAX - pas_regions[idx].base_pa) <
pas_regions[idx].size) {
ERROR("[GPT] Address overflow in PAS[%u]!\n", idx);
return -EOVERFLOW;
}
/* Initial checks for PAS validity. */
if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
!gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
ERROR("[GPT] PAS[%u] is invalid!\n", idx);
return -EFAULT;
}
/*
* Make sure this PAS does not overlap with another one. We
* start from idx + 1 instead of 0 since prior PAS mappings will
* have already checked themselves against this one.
*/
for (unsigned int i = idx + 1; i < pas_region_cnt; i++) {
if (gpt_check_pas_overlap(pas_regions[idx].base_pa,
pas_regions[idx].size,
pas_regions[i].base_pa,
pas_regions[i].size)) {
ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n",
i, idx);
return -EFAULT;
}
}
/*
* Since this function can be called multiple times with
* separate L1 tables we need to check the existing L0 mapping
* to see if this PAS would fall into one that has already been
* initialized.
*/
for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa);
i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1);
i++) {
if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
(GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
/* This descriptor is unused so continue. */
continue;
}
/*
* This descriptor has been initialized in a previous
* call to this function so cannot be initialized again.
*/
ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n",
idx, i);
return -EFAULT;
}
/* Check for block mapping (L0) type. */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
/* Make sure base and size are block-aligned. */
if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
!GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
ERROR("[GPT] PAS[%u] is not block-aligned!\n",
idx);
return -EFAULT;
}
continue;
}
/* Check for granule mapping (L1) type. */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
/* Make sure base and size are granule-aligned. */
if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
ERROR("[GPT] PAS[%u] is not granule-aligned!\n",
idx);
return -EFAULT;
}
/* Find how many L1 tables this PAS occupies. */
pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1) -
GPT_L0_IDX(pas_regions[idx].base_pa) + 1);
/*
* This creates a situation where, if multiple PAS
* regions occupy the same table descriptor, we can get
* an artificially high total L1 table count. The way we
* handle this is by checking each PAS against those
* before it in the array, and if they both occupy the
* same PAS we subtract from pas_l1_cnt and only the
* first PAS in the array gets to count it.
*/
/*
* If L1 count is greater than 1 we know the start and
* end PAs are in different L0 regions so we must check
* both for overlap against other PAS.
*/
if (pas_l1_cnt > 1) {
if (gpt_does_previous_pas_exist_here(
GPT_L0_IDX(pas_regions[idx].base_pa +
pas_regions[idx].size - 1),
pas_regions, idx)) {
pas_l1_cnt = pas_l1_cnt - 1;
}
}
if (gpt_does_previous_pas_exist_here(
GPT_L0_IDX(pas_regions[idx].base_pa),
pas_regions, idx)) {
pas_l1_cnt = pas_l1_cnt - 1;
}
l1_cnt += pas_l1_cnt;
continue;
}
/* If execution reaches this point, mapping type is invalid. */
ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx,
GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
return -EINVAL;
}
return l1_cnt;
}
/*
* This function validates L0 initialization parameters.
*
* Parameters
* l0_mem_base Base address of memory used for L0 tables.
* l1_mem_size Size of memory available for L0 tables.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
size_t l0_mem_size)
{
size_t l0_alignment;
/*
* Make sure PPS is valid and then store it since macros need this value
* to work.
*/
if (pps > GPT_PPS_MAX) {
ERROR("[GPT] Invalid PPS: 0x%x\n", pps);
return -EINVAL;
}
gpt_config.pps = pps;
gpt_config.t = gpt_t_lookup[pps];
/* Alignment must be the greater of 4k or l0 table size. */
l0_alignment = PAGE_SIZE_4KB;
if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
}
/* Check base address. */
if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) {
ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base);
return -EFAULT;
}
/* Check size. */
if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) {
ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n",
GPT_L0_TABLE_SIZE(gpt_config.t),
l0_mem_size);
return -ENOMEM;
}
return 0;
}
/*
* In the event that L1 tables are needed, this function validates
* the L1 table generation parameters.
*
* Parameters
* l1_mem_base Base address of memory used for L1 table allocation.
* l1_mem_size Total size of memory available for L1 tables.
* l1_gpt_cnt Number of L1 tables needed.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
unsigned int l1_gpt_cnt)
{
size_t l1_gpt_mem_sz;
/* Check if the granularity is supported */
if (!xlat_arch_is_granule_size_supported(
GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
return -EPERM;
}
/* Make sure L1 tables are aligned to their size. */
if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) {
ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n",
l1_mem_base);
return -EFAULT;
}
/* Get total memory needed for L1 tables. */
l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
/* Check for overflow. */
if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
ERROR("[GPT] Overflow calculating L1 memory size.\n");
return -ENOMEM;
}
/* Make sure enough space was supplied. */
if (l1_mem_size < l1_gpt_mem_sz) {
ERROR("[GPT] Inadequate memory for L1 GPTs. ");
ERROR(" Expected 0x%lx bytes. Got 0x%lx bytes\n",
l1_gpt_mem_sz, l1_mem_size);
return -ENOMEM;
}
VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz);
return 0;
}
/*
* This function initializes L0 block descriptors (regions that cannot be
* transitioned at the granule level) according to the provided PAS.
*
* Parameters
* *pas Pointer to the structure defining the PAS region to
* initialize.
*/
static void gpt_generate_l0_blk_desc(pas_region_t *pas)
{
uint64_t gpt_desc;
unsigned int end_idx;
unsigned int idx;
uint64_t *l0_gpt_arr;
assert(gpt_config.plat_gpt_l0_base != 0U);
assert(pas != NULL);
/*
* Checking of PAS parameters has already been done in
* gpt_validate_pas_mappings so no need to check the same things again.
*/
l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
/* Create the GPT Block descriptor for this PAS region */
gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
/* Start index of this region in L0 GPTs */
idx = GPT_L0_IDX(pas->base_pa);
/*
* Determine number of L0 GPT descriptors covered by
* this PAS region and use the count to populate these
* descriptors.
*/
end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
/* Generate the needed block descriptors. */
for (; idx < end_idx; idx++) {
l0_gpt_arr[idx] = gpt_desc;
VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%" PRIx64 " (0x%" PRIx64 ")\n",
idx, &l0_gpt_arr[idx],
(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
}
}
/*
* Helper function to determine if the end physical address lies in the same L0
* region as the current physical address. If true, the end physical address is
* returned else, the start address of the next region is returned.
*
* Parameters
* cur_pa Physical address of the current PA in the loop through
* the range.
* end_pa Physical address of the end PA in a PAS range.
*
* Return
* The PA of the end of the current range.
*/
static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
{
uintptr_t cur_idx;
uintptr_t end_idx;
cur_idx = GPT_L0_IDX(cur_pa);
end_idx = GPT_L0_IDX(end_pa);
assert(cur_idx <= end_idx);
if (cur_idx == end_idx) {
return end_pa;
}
return (cur_idx + 1U) << GPT_L0_IDX_SHIFT;
}
/*
* Helper function to fill out GPI entries in a single L1 table. This function
* fills out entire L1 descriptors at a time to save memory writes.
*
* Parameters
* gpi GPI to set this range to
* l1 Pointer to L1 table to fill out
* first Address of first granule in range.
* last Address of last granule in range (inclusive).
*/
static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first,
uintptr_t last)
{
uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi);
uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF;
assert(first <= last);
assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
assert(l1 != NULL);
/* Shift the mask if we're starting in the middle of an L1 entry. */
gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
/* Fill out each L1 entry for this region. */
for (unsigned int i = GPT_L1_IDX(gpt_config.p, first);
i <= GPT_L1_IDX(gpt_config.p, last); i++) {
/* Account for stopping in the middle of an L1 entry. */
if (i == GPT_L1_IDX(gpt_config.p, last)) {
gpi_mask &= (gpi_mask >> ((15 -
GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
}
/* Write GPI values. */
assert((l1[i] & gpi_mask) ==
(GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask));
l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field);
/* Reset mask. */
gpi_mask = 0xFFFFFFFFFFFFFFFF;
}
}
/*
* This function finds the next available unused L1 table and initializes all
* granules descriptor entries to GPI_ANY. This ensures that there are no chunks
* of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
* event that a PAS region stops midway through an L1 table, thus guaranteeing
* that all memory not explicitly assigned is GPI_ANY. This function does not
* check for overflow conditions, that should be done by the caller.
*
* Return
* Pointer to the next available L1 table.
*/
static uint64_t *gpt_get_new_l1_tbl(void)
{
/* Retrieve the next L1 table. */
uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) +
(GPT_L1_TABLE_SIZE(gpt_config.p) *
gpt_next_l1_tbl_idx));
/* Increment L1 counter. */
gpt_next_l1_tbl_idx++;
/* Initialize all GPIs to GPT_GPI_ANY */
for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY);
}
return l1;
}
/*
* When L1 tables are needed, this function creates the necessary L0 table
* descriptors and fills out the L1 table entries according to the supplied
* PAS range.
*
* Parameters
* *pas Pointer to the structure defining the PAS region.
*/
static void gpt_generate_l0_tbl_desc(pas_region_t *pas)
{
uintptr_t end_pa;
uintptr_t cur_pa;
uintptr_t last_gran_pa;
uint64_t *l0_gpt_base;
uint64_t *l1_gpt_arr;
unsigned int l0_idx;
assert(gpt_config.plat_gpt_l0_base != 0U);
assert(pas != NULL);
/*
* Checking of PAS parameters has already been done in
* gpt_validate_pas_mappings so no need to check the same things again.
*/
end_pa = pas->base_pa + pas->size;
l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
/* We start working from the granule at base PA */
cur_pa = pas->base_pa;
/* Iterate over each L0 region in this memory range. */
for (l0_idx = GPT_L0_IDX(pas->base_pa);
l0_idx <= GPT_L0_IDX(end_pa - 1U);
l0_idx++) {
/*
* See if the L0 entry is already a table descriptor or if we
* need to create one.
*/
if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
/* Get the L1 array from the L0 entry. */
l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
} else {
/* Get a new L1 table from the L1 memory space. */
l1_gpt_arr = gpt_get_new_l1_tbl();
/* Fill out the L0 descriptor and flush it. */
l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
}
VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%" PRIx64 ")\n",
l0_idx, &l0_gpt_base[l0_idx],
(unsigned long long)(l1_gpt_arr),
l0_gpt_base[l0_idx]);
/*
* Determine the PA of the last granule in this L0 descriptor.
*/
last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) -
GPT_PGS_ACTUAL_SIZE(gpt_config.p);
/*
* Fill up L1 GPT entries between these two addresses. This
* function needs the addresses of the first granule and last
* granule in the range.
*/
gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr,
cur_pa, last_gran_pa);
/* Advance cur_pa to first granule in next L0 region. */
cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa);
}
}
/*
* This function flushes a range of L0 descriptors used by a given PAS region
* array. There is a chance that some unmodified L0 descriptors would be flushed
* in the case that there are "holes" in an array of PAS regions but overall
* this should be faster than individually flushing each modified L0 descriptor
* as they are created.
*
* Parameters
* *pas Pointer to an array of PAS regions.
* pas_count Number of entries in the PAS array.
*/
static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
{
unsigned int idx;
unsigned int start_idx;
unsigned int end_idx;
uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
assert(pas != NULL);
assert(pas_count > 0);
/* Initial start and end values. */
start_idx = GPT_L0_IDX(pas[0].base_pa);
end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1);
/* Find lowest and highest L0 indices used in this PAS array. */
for (idx = 1; idx < pas_count; idx++) {
if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
start_idx = GPT_L0_IDX(pas[idx].base_pa);
}
if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) {
end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1);
}
}
/*
* Flush all covered L0 descriptors, add 1 because we need to include
* the end index value.
*/
flush_dcache_range((uintptr_t)&l0[start_idx],
((end_idx + 1) - start_idx) * sizeof(uint64_t));
}
/*
* Public API to enable granule protection checks once the tables have all been
* initialized. This function is called at first initialization and then again
* later during warm boots of CPU cores.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_enable(void)
{
u_register_t gpccr_el3;
/*
* Granule tables must be initialised before enabling
* granule protection.
*/
if (gpt_config.plat_gpt_l0_base == 0U) {
ERROR("[GPT] Tables have not been initialized!\n");
return -EPERM;
}
/* Write the base address of the L0 tables into GPTBR */
write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
/* GPCCR_EL3.PPS */
gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
/* GPCCR_EL3.PGS */
gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
/*
* Since EL3 maps the L1 region as Inner shareable, use the same
* shareability attribute for GPC as well so that
* GPC fetches are visible to PEs
*/
gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
/* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */
gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
write_gpccr_el3(gpccr_el3);
isb();
/* Invalidate any stale TLB entries and any cached register fields */
tlbipaallos();
dsb();
isb();
/* Enable GPT */
gpccr_el3 |= GPCCR_GPC_BIT;
/* TODO: Configure GPCCR_EL3_GPCP for Fault control. */
write_gpccr_el3(gpccr_el3);
isb();
tlbipaallos();
dsb();
isb();
return 0;
}
/*
* Public API to disable granule protection checks.
*/
void gpt_disable(void)
{
u_register_t gpccr_el3 = read_gpccr_el3();
write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
dsbsy();
isb();
}
/*
* Public API that initializes the entire protected space to GPT_GPI_ANY using
* the L0 tables (block descriptors). Ideally, this function is invoked prior
* to DDR discovery and initialization. The MMU must be initialized before
* calling this function.
*
* Parameters
* pps PPS value to use for table generation
* l0_mem_base Base address of L0 tables in memory.
* l0_mem_size Total size of memory available for L0 tables.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_init_l0_tables(unsigned int pps, uintptr_t l0_mem_base,
size_t l0_mem_size)
{
int ret;
uint64_t gpt_desc;
/* Ensure that MMU and Data caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* Validate other parameters. */
ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size);
if (ret != 0) {
return ret;
}
/* Create the descriptor to initialize L0 entries with. */
gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
/* Iterate through all L0 entries */
for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
((uint64_t *)l0_mem_base)[i] = gpt_desc;
}
/* Flush updated L0 tables to memory. */
flush_dcache_range((uintptr_t)l0_mem_base,
(size_t)GPT_L0_TABLE_SIZE(gpt_config.t));
/* Stash the L0 base address once initial setup is complete. */
gpt_config.plat_gpt_l0_base = l0_mem_base;
return 0;
}
/*
* Public API that carves out PAS regions from the L0 tables and builds any L1
* tables that are needed. This function ideally is run after DDR discovery and
* initialization. The L0 tables must have already been initialized to GPI_ANY
* when this function is called.
*
* This function can be called multiple times with different L1 memory ranges
* and PAS regions if it is desirable to place L1 tables in different locations
* in memory. (ex: you have multiple DDR banks and want to place the L1 tables
* in the DDR bank that they control)
*
* Parameters
* pgs PGS value to use for table generation.
* l1_mem_base Base address of memory used for L1 tables.
* l1_mem_size Total size of memory available for L1 tables.
* *pas_regions Pointer to PAS regions structure array.
* pas_count Total number of PAS regions.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
size_t l1_mem_size, pas_region_t *pas_regions,
unsigned int pas_count)
{
int ret;
int l1_gpt_cnt;
/* Ensure that MMU and Data caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* PGS is needed for gpt_validate_pas_mappings so check it now. */
if (pgs > GPT_PGS_MAX) {
ERROR("[GPT] Invalid PGS: 0x%x\n", pgs);
return -EINVAL;
}
gpt_config.pgs = pgs;
gpt_config.p = gpt_p_lookup[pgs];
/* Make sure L0 tables have been initialized. */
if (gpt_config.plat_gpt_l0_base == 0U) {
ERROR("[GPT] L0 tables must be initialized first!\n");
return -EPERM;
}
/* Check if L1 GPTs are required and how many. */
l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count);
if (l1_gpt_cnt < 0) {
return l1_gpt_cnt;
}
VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt);
/* If L1 tables are needed then validate the L1 parameters. */
if (l1_gpt_cnt > 0) {
ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size,
l1_gpt_cnt);
if (ret != 0) {
return ret;
}
/* Set up parameters for L1 table generation. */
gpt_l1_tbl = l1_mem_base;
gpt_next_l1_tbl_idx = 0U;
}
INFO("[GPT] Boot Configuration\n");
INFO(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
INFO(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
INFO(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
INFO(" PAS count: 0x%x\n", pas_count);
INFO(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base);
/* Generate the tables in memory. */
for (unsigned int idx = 0U; idx < pas_count; idx++) {
INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n",
idx, pas_regions[idx].base_pa, pas_regions[idx].size,
GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
/* Check if a block or table descriptor is required */
if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
gpt_generate_l0_blk_desc(&pas_regions[idx]);
} else {
gpt_generate_l0_tbl_desc(&pas_regions[idx]);
}
}
/* Flush modified L0 tables. */
flush_l0_for_pas_array(pas_regions, pas_count);
/* Flush L1 tables if needed. */
if (l1_gpt_cnt > 0) {
flush_dcache_range(l1_mem_base,
GPT_L1_TABLE_SIZE(gpt_config.p) *
l1_gpt_cnt);
}
/* Make sure that all the entries are written to the memory. */
dsbishst();
tlbipaallos();
dsb();
isb();
return 0;
}
/*
* Public API to initialize the runtime gpt_config structure based on the values
* present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
* typically happens in a bootloader stage prior to setting up the EL3 runtime
* environment for the granule transition service so this function detects the
* initialization from a previous stage. Granule protection checks must be
* enabled already or this function will return an error.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_runtime_init(void)
{
u_register_t reg;
/* Ensure that MMU and Data caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
/* Ensure GPC are already enabled. */
if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
ERROR("[GPT] Granule protection checks are not enabled!\n");
return -EPERM;
}
/*
* Read the L0 table address from GPTBR, we don't need the L1 base
* address since those are included in the L0 tables as needed.
*/
reg = read_gptbr_el3();
gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
GPTBR_BADDR_MASK) <<
GPTBR_BADDR_VAL_SHIFT;
/* Read GPCCR to get PGS and PPS values. */
reg = read_gpccr_el3();
gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
gpt_config.t = gpt_t_lookup[gpt_config.pps];
gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
gpt_config.p = gpt_p_lookup[gpt_config.pgs];
VERBOSE("[GPT] Runtime Configuration\n");
VERBOSE(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
VERBOSE(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
VERBOSE(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
VERBOSE(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base);
return 0;
}
/*
* The L1 descriptors are protected by a spinlock to ensure that multiple
* CPUs do not attempt to change the descriptors at once. In the future it
* would be better to have separate spinlocks for each L1 descriptor.
*/
static spinlock_t gpt_lock;
/*
* A helper to write the value (target_pas << gpi_shift) to the index of
* the gpt_l1_addr
*/
static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
unsigned int gpi_shift, unsigned int idx,
unsigned int target_pas)
{
*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
gpt_l1_addr[idx] = *gpt_l1_desc;
}
/*
* Helper to retrieve the gpt_l1_* information from the base address
* returned in gpi_info
*/
static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
{
uint64_t gpt_l0_desc, *gpt_l0_base;
gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
VERBOSE("[GPT] Granule is not covered by a table descriptor!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
return -EINVAL;
}
/* Get the table index and GPI shift from PA. */
gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
gpi_info->idx = GPT_L1_IDX(gpt_config.p, base);
gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
gpi_info->gpi = (gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
GPT_L1_GRAN_DESC_GPI_MASK;
return 0;
}
/*
* This function is the granule transition delegate service. When a granule
* transition request occurs it is routed to this function to have the request,
* if valid, fulfilled following A1.1.1 Delegate of RME supplement
*
* TODO: implement support for transitioning multiple granules at once.
*
* Parameters
* base Base address of the region to transition, must be
* aligned to granule size.
* size Size of region to transition, must be aligned to granule
* size.
* src_sec_state Security state of the caller.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
gpi_info_t gpi_info;
uint64_t nse;
int res;
unsigned int target_pas;
/* Ensure that the tables have been set up before taking requests. */
assert(gpt_config.plat_gpt_l0_base != 0UL);
/* Ensure that caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
/* Delegate request can only come from REALM or SECURE */
assert(src_sec_state == SMC_FROM_REALM ||
src_sec_state == SMC_FROM_SECURE);
/* See if this is a single or a range of granule transition. */
if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
return -EINVAL;
}
/* Check that base and size are valid */
if ((ULONG_MAX - base) < size) {
VERBOSE("[GPT] Transition request address overflow!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Make sure base and size are valid. */
if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
(size == 0UL) ||
((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
VERBOSE("[GPT] Invalid granule transition address range!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
target_pas = GPT_GPI_REALM;
if (src_sec_state == SMC_FROM_SECURE) {
target_pas = GPT_GPI_SECURE;
}
/*
* Access to L1 tables is controlled by a global lock to ensure
* that no more than one CPU is allowed to make changes at any
* given time.
*/
spin_lock(&gpt_lock);
res = get_gpi_params(base, &gpi_info);
if (res != 0) {
spin_unlock(&gpt_lock);
return res;
}
/* Check that the current address is in NS state */
if (gpi_info.gpi != GPT_GPI_NS) {
VERBOSE("[GPT] Only Granule in NS state can be delegated.\n");
VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
gpi_info.gpi);
spin_unlock(&gpt_lock);
return -EPERM;
}
if (src_sec_state == SMC_FROM_SECURE) {
nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
} else {
nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
}
/*
* In order to maintain mutual distrust between Realm and Secure
* states, remove any data speculatively fetched into the target
* physical address space. Issue DC CIPAPA over address range
*/
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, target_pas);
dsboshst();
gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
dsbosh();
nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
/* Unlock access to the L1 tables. */
spin_unlock(&gpt_lock);
/*
* The isb() will be done as part of context
* synchronization when returning to lower EL
*/
VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
base, gpi_info.gpi, target_pas);
return 0;
}
/*
* This function is the granule transition undelegate service. When a granule
* transition request occurs it is routed to this function where the request is
* validated then fulfilled if possible.
*
* TODO: implement support for transitioning multiple granules at once.
*
* Parameters
* base Base address of the region to transition, must be
* aligned to granule size.
* size Size of region to transition, must be aligned to granule
* size.
* src_sec_state Security state of the caller.
*
* Return
* Negative Linux error code in the event of a failure, 0 for success.
*/
int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
gpi_info_t gpi_info;
uint64_t nse;
int res;
/* Ensure that the tables have been set up before taking requests. */
assert(gpt_config.plat_gpt_l0_base != 0UL);
/* Ensure that MMU and caches are enabled. */
assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
/* Delegate request can only come from REALM or SECURE */
assert(src_sec_state == SMC_FROM_REALM ||
src_sec_state == SMC_FROM_SECURE);
/* See if this is a single or a range of granule transition. */
if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
return -EINVAL;
}
/* Check that base and size are valid */
if ((ULONG_MAX - base) < size) {
VERBOSE("[GPT] Transition request address overflow!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/* Make sure base and size are valid. */
if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
(size == 0UL) ||
((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
VERBOSE("[GPT] Invalid granule transition address range!\n");
VERBOSE(" Base=0x%" PRIx64 "\n", base);
VERBOSE(" Size=0x%lx\n", size);
return -EINVAL;
}
/*
* Access to L1 tables is controlled by a global lock to ensure
* that no more than one CPU is allowed to make changes at any
* given time.
*/
spin_lock(&gpt_lock);
res = get_gpi_params(base, &gpi_info);
if (res != 0) {
spin_unlock(&gpt_lock);
return res;
}
/* Check that the current address is in the delegated state */
if ((src_sec_state == SMC_FROM_REALM &&
gpi_info.gpi != GPT_GPI_REALM) ||
(src_sec_state == SMC_FROM_SECURE &&
gpi_info.gpi != GPT_GPI_SECURE)) {
VERBOSE("[GPT] Only Granule in REALM or SECURE state can be undelegated.\n");
VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
gpi_info.gpi);
spin_unlock(&gpt_lock);
return -EPERM;
}
/* In order to maintain mutual distrust between Realm and Secure
* states, remove access now, in order to guarantee that writes
* to the currently-accessible physical address space will not
* later become observable.
*/
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
dsboshst();
gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
dsbosh();
if (src_sec_state == SMC_FROM_SECURE) {
nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
} else {
nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
}
/* Ensure that the scrubbed data has made it past the PoPA */
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
/*
* Remove any data loaded speculatively
* in NS space from before the scrubbing
*/
nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
flush_dcache_to_popa_range(nse | base,
GPT_PGS_ACTUAL_SIZE(gpt_config.p));
/* Clear existing GPI encoding and transition granule. */
write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
dsboshst();
/* Ensure that all agents observe the new NS configuration */
gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
dsbosh();
/* Unlock access to the L1 tables. */
spin_unlock(&gpt_lock);
/*
* The isb() will be done as part of context
* synchronization when returning to lower EL
*/
VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
base, gpi_info.gpi, GPT_GPI_NS);
return 0;
}
|