1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <arch_helpers.h>
#include <lib/bakery_lock.h>
#include <lib/el3_runtime/cpu_data.h>
#include <lib/utils_def.h>
#include <plat/common/platform.h>
/*
* Functions in this file implement Bakery Algorithm for mutual exclusion with the
* bakery lock data structures in cacheable and Normal memory.
*
* ARM architecture offers a family of exclusive access instructions to
* efficiently implement mutual exclusion with hardware support. However, as
* well as depending on external hardware, these instructions have defined
* behavior only on certain memory types (cacheable and Normal memory in
* particular; see ARMv8 Architecture Reference Manual section B2.10). Use cases
* in trusted firmware are such that mutual exclusion implementation cannot
* expect that accesses to the lock have the specific type required by the
* architecture for these primitives to function (for example, not all
* contenders may have address translation enabled).
*
* This implementation does not use mutual exclusion primitives. It expects
* memory regions where the locks reside to be cacheable and Normal.
*
* Note that the ARM architecture guarantees single-copy atomicity for aligned
* accesses regardless of status of address translation.
*/
#ifdef PLAT_PERCPU_BAKERY_LOCK_SIZE
/*
* Verify that the platform defined value for the per-cpu space for bakery locks is
* a multiple of the cache line size, to prevent multiple CPUs writing to the same
* bakery lock cache line
*
* Using this value, if provided, rather than the linker generated value results in
* more efficient code
*/
CASSERT((PLAT_PERCPU_BAKERY_LOCK_SIZE & (CACHE_WRITEBACK_GRANULE - 1)) == 0, \
PLAT_PERCPU_BAKERY_LOCK_SIZE_not_cacheline_multiple);
#define PERCPU_BAKERY_LOCK_SIZE (PLAT_PERCPU_BAKERY_LOCK_SIZE)
#else
/*
* Use the linker defined symbol which has evaluated the size reqiurement.
* This is not as efficient as using a platform defined constant
*/
IMPORT_SYM(uintptr_t, __PERCPU_BAKERY_LOCK_START__, BAKERY_LOCK_START);
IMPORT_SYM(uintptr_t, __PERCPU_BAKERY_LOCK_END__, BAKERY_LOCK_END);
#define PERCPU_BAKERY_LOCK_SIZE (BAKERY_LOCK_END - BAKERY_LOCK_START)
#endif
static inline bakery_lock_t *get_bakery_info(unsigned int cpu_ix,
bakery_lock_t *lock)
{
return (bakery_info_t *)((uintptr_t)lock +
cpu_ix * PERCPU_BAKERY_LOCK_SIZE);
}
static inline void write_cache_op(uintptr_t addr, bool cached)
{
if (cached)
dccvac(addr);
else
dcivac(addr);
dsbish();
}
static inline void read_cache_op(uintptr_t addr, bool cached)
{
if (cached)
dccivac(addr);
dmbish();
}
/* Helper function to check if the lock is acquired */
static inline __unused bool is_lock_acquired(const bakery_info_t *my_bakery_info,
bool is_cached)
{
/*
* Even though lock data is updated only by the owning cpu and
* appropriate cache maintenance operations are performed,
* if the previous update was done when the cpu was not participating
* in coherency, then there is a chance that cache maintenance
* operations were not propagated to all the caches in the system.
* Hence do a `read_cache_op()` prior to read.
*/
read_cache_op((uintptr_t)my_bakery_info, is_cached);
return bakery_ticket_number(my_bakery_info->lock_data) != 0U;
}
static unsigned int bakery_get_ticket(bakery_lock_t *lock,
unsigned int me, bool is_cached)
{
unsigned int my_ticket, their_ticket;
unsigned int they;
bakery_info_t *my_bakery_info, *their_bakery_info;
/*
* Obtain a reference to the bakery information for this cpu and ensure
* it is not NULL.
*/
my_bakery_info = get_bakery_info(me, lock);
assert(my_bakery_info != NULL);
/* Prevent recursive acquisition.*/
assert(!is_lock_acquired(my_bakery_info, is_cached));
/*
* Tell other contenders that we are through the bakery doorway i.e.
* going to allocate a ticket for this cpu.
*/
my_ticket = 0U;
my_bakery_info->lock_data = make_bakery_data(CHOOSING_TICKET, my_ticket);
write_cache_op((uintptr_t)my_bakery_info, is_cached);
/*
* Iterate through the bakery information of each contender to allocate
* the highest ticket number for this cpu.
*/
for (they = 0U; they < BAKERY_LOCK_MAX_CPUS; they++) {
if (me == they)
continue;
/*
* Get a reference to the other contender's bakery info and
* ensure that a stale copy is not read.
*/
their_bakery_info = get_bakery_info(they, lock);
assert(their_bakery_info != NULL);
read_cache_op((uintptr_t)their_bakery_info, is_cached);
/*
* Update this cpu's ticket number if a higher ticket number is
* seen
*/
their_ticket = bakery_ticket_number(their_bakery_info->lock_data);
if (their_ticket > my_ticket)
my_ticket = their_ticket;
}
/*
* Compute ticket; then signal to other contenders waiting for us to
* finish calculating our ticket value that we're done
*/
++my_ticket;
my_bakery_info->lock_data = make_bakery_data(CHOSEN_TICKET, my_ticket);
write_cache_op((uintptr_t)my_bakery_info, is_cached);
return my_ticket;
}
void bakery_lock_get(bakery_lock_t *lock)
{
unsigned int they, me;
unsigned int my_ticket, my_prio, their_ticket;
bakery_info_t *their_bakery_info;
unsigned int their_bakery_data;
bool is_cached;
me = plat_my_core_pos();
is_cached = is_dcache_enabled();
/* Get a ticket */
my_ticket = bakery_get_ticket(lock, me, is_cached);
/*
* Now that we got our ticket, compute our priority value, then compare
* with that of others, and proceed to acquire the lock
*/
my_prio = bakery_get_priority(my_ticket, me);
for (they = 0U; they < BAKERY_LOCK_MAX_CPUS; they++) {
if (me == they)
continue;
/*
* Get a reference to the other contender's bakery info and
* ensure that a stale copy is not read.
*/
their_bakery_info = get_bakery_info(they, lock);
assert(their_bakery_info != NULL);
/* Wait for the contender to get their ticket */
do {
read_cache_op((uintptr_t)their_bakery_info, is_cached);
their_bakery_data = their_bakery_info->lock_data;
} while (bakery_is_choosing(their_bakery_data));
/*
* If the other party is a contender, they'll have non-zero
* (valid) ticket value. If they do, compare priorities
*/
their_ticket = bakery_ticket_number(their_bakery_data);
if (their_ticket && (bakery_get_priority(their_ticket, they) < my_prio)) {
/*
* They have higher priority (lower value). Wait for
* their ticket value to change (either release the lock
* to have it dropped to 0; or drop and probably content
* again for the same lock to have an even higher value)
*/
do {
wfe();
read_cache_op((uintptr_t)their_bakery_info, is_cached);
} while (their_ticket
== bakery_ticket_number(their_bakery_info->lock_data));
}
}
/*
* Lock acquired. Ensure that any reads and writes from a shared
* resource in the critical section read/write values after the lock is
* acquired.
*/
dmbish();
}
void bakery_lock_release(bakery_lock_t *lock)
{
bakery_info_t *my_bakery_info;
bool is_cached = is_dcache_enabled();
my_bakery_info = get_bakery_info(plat_my_core_pos(), lock);
assert(is_lock_acquired(my_bakery_info, is_cached));
/*
* Ensure that other observers see any stores in the critical section
* before releasing the lock. Also ensure all loads in the critical
* section are complete before releasing the lock. Release the lock by
* resetting ticket. Then signal other waiting contenders.
*/
dmbish();
my_bakery_info->lock_data = 0U;
write_cache_op((uintptr_t)my_bakery_info, is_cached);
/* This sev is ordered by the dsbish in write_cahce_op */
sev();
}
|