1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup glue_kron
//! @{
//! \brief
//! both input matrices have the same element type
template<typename eT>
inline
void
glue_kron::direct_kron(Mat<eT>& out, const Mat<eT>& A, const Mat<eT>& B)
{
arma_extra_debug_sigprint();
const uword A_rows = A.n_rows;
const uword A_cols = A.n_cols;
const uword B_rows = B.n_rows;
const uword B_cols = B.n_cols;
out.set_size(A_rows*B_rows, A_cols*B_cols);
if(out.is_empty()) { return; }
for(uword j = 0; j < A_cols; j++)
{
for(uword i = 0; i < A_rows; i++)
{
out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A.at(i,j) * B;
}
}
}
//! \brief
//! different types of input matrices
//! A -> complex, B -> basic element type
template<typename T>
inline
void
glue_kron::direct_kron(Mat< std::complex<T> >& out, const Mat< std::complex<T> >& A, const Mat<T>& B)
{
arma_extra_debug_sigprint();
typedef typename std::complex<T> eT;
const uword A_rows = A.n_rows;
const uword A_cols = A.n_cols;
const uword B_rows = B.n_rows;
const uword B_cols = B.n_cols;
out.set_size(A_rows*B_rows, A_cols*B_cols);
if(out.is_empty()) { return; }
Mat<eT> tmp_B = conv_to< Mat<eT> >::from(B);
for(uword j = 0; j < A_cols; j++)
{
for(uword i = 0; i < A_rows; i++)
{
out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A.at(i,j) * tmp_B;
}
}
}
//! \brief
//! different types of input matrices
//! A -> basic element type, B -> complex
template<typename T>
inline
void
glue_kron::direct_kron(Mat< std::complex<T> >& out, const Mat<T>& A, const Mat< std::complex<T> >& B)
{
arma_extra_debug_sigprint();
const uword A_rows = A.n_rows;
const uword A_cols = A.n_cols;
const uword B_rows = B.n_rows;
const uword B_cols = B.n_cols;
out.set_size(A_rows*B_rows, A_cols*B_cols);
if(out.is_empty()) { return; }
for(uword j = 0; j < A_cols; j++)
{
for(uword i = 0; i < A_rows; i++)
{
out.submat(i*B_rows, j*B_cols, (i+1)*B_rows-1, (j+1)*B_cols-1) = A.at(i,j) * B;
}
}
}
//! \brief
//! apply Kronecker product for two objects with same element type
template<typename T1, typename T2>
inline
void
glue_kron::apply(Mat<typename T1::elem_type>& out, const Glue<T1,T2,glue_kron>& X)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap<T1> A_tmp(X.A);
const unwrap<T2> B_tmp(X.B);
const Mat<eT>& A = A_tmp.M;
const Mat<eT>& B = B_tmp.M;
if( (&out != &A) && (&out != &B) )
{
glue_kron::direct_kron(out, A, B);
}
else
{
Mat<eT> tmp;
glue_kron::direct_kron(tmp, A, B);
out.steal_mem(tmp);
}
}
//! @}
|