1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup gemm_mixed
//! @{
//! \brief
//! Matrix multplication where the matrices have differing element types.
//! Uses caching for speedup.
//! Matrix 'C' is assumed to have been set to the correct size (i.e. taking into account transposes)
template<const bool do_trans_A=false, const bool do_trans_B=false, const bool use_alpha=false, const bool use_beta=false>
class gemm_mixed_large
{
public:
template<typename out_eT, typename in_eT1, typename in_eT2>
arma_hot
inline
static
void
apply
(
Mat<out_eT>& C,
const Mat<in_eT1>& A,
const Mat<in_eT2>& B,
const out_eT alpha = out_eT(1),
const out_eT beta = out_eT(0)
)
{
arma_extra_debug_sigprint();
const uword A_n_rows = A.n_rows;
const uword A_n_cols = A.n_cols;
const uword B_n_rows = B.n_rows;
const uword B_n_cols = B.n_cols;
if( (do_trans_A == false) && (do_trans_B == false) )
{
podarray<in_eT1> tmp(A_n_cols);
in_eT1* A_rowdata = tmp.memptr();
#if defined(ARMA_USE_OPENMP)
const bool use_mp = (B_n_cols >= 2) && (B.n_elem >= 8192) && (mp_thread_limit::in_parallel() == false);
#else
const bool use_mp = false;
#endif
if(use_mp)
{
#if defined(ARMA_USE_OPENMP)
{
const int n_threads = int( (std::min)( uword(mp_thread_limit::get()), uword(B_n_cols) ) );
for(uword row_A=0; row_A < A_n_rows; ++row_A)
{
tmp.copy_row(A, row_A);
#pragma omp parallel for schedule(static) num_threads(n_threads)
for(uword col_B=0; col_B < B_n_cols; ++col_B)
{
const in_eT2* B_coldata = B.colptr(col_B);
out_eT acc = out_eT(0);
for(uword i=0; i < B_n_rows; ++i)
{
acc += upgrade_val<in_eT1,in_eT2>::apply(A_rowdata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]);
}
if( (use_alpha == false) && (use_beta == false) ) { C.at(row_A,col_B) = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C.at(row_A,col_B) = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C.at(row_A,col_B) = acc + beta*C.at(row_A,col_B); }
else if( (use_alpha == true ) && (use_beta == true ) ) { C.at(row_A,col_B) = alpha*acc + beta*C.at(row_A,col_B); }
}
}
}
#endif
}
else
{
for(uword row_A=0; row_A < A_n_rows; ++row_A)
{
tmp.copy_row(A, row_A);
for(uword col_B=0; col_B < B_n_cols; ++col_B)
{
const in_eT2* B_coldata = B.colptr(col_B);
out_eT acc = out_eT(0);
for(uword i=0; i < B_n_rows; ++i)
{
acc += upgrade_val<in_eT1,in_eT2>::apply(A_rowdata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]);
}
if( (use_alpha == false) && (use_beta == false) ) { C.at(row_A,col_B) = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C.at(row_A,col_B) = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C.at(row_A,col_B) = acc + beta*C.at(row_A,col_B); }
else if( (use_alpha == true ) && (use_beta == true ) ) { C.at(row_A,col_B) = alpha*acc + beta*C.at(row_A,col_B); }
}
}
}
}
else
if( (do_trans_A == true) && (do_trans_B == false) )
{
#if defined(ARMA_USE_OPENMP)
const bool use_mp = (B_n_cols >= 2) && (B.n_elem >= 8192) && (mp_thread_limit::in_parallel() == false);
#else
const bool use_mp = false;
#endif
if(use_mp)
{
#if defined(ARMA_USE_OPENMP)
{
const int n_threads = int( (std::min)( uword(mp_thread_limit::get()), uword(B_n_cols) ) );
for(uword col_A=0; col_A < A_n_cols; ++col_A)
{
// col_A is interpreted as row_A when storing the results in matrix C
const in_eT1* A_coldata = A.colptr(col_A);
#pragma omp parallel for schedule(static) num_threads(n_threads)
for(uword col_B=0; col_B < B_n_cols; ++col_B)
{
const in_eT2* B_coldata = B.colptr(col_B);
out_eT acc = out_eT(0);
for(uword i=0; i < B_n_rows; ++i)
{
acc += upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]);
}
if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,col_B) = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C.at(col_A,col_B) = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C.at(col_A,col_B) = acc + beta*C.at(col_A,col_B); }
else if( (use_alpha == true ) && (use_beta == true ) ) { C.at(col_A,col_B) = alpha*acc + beta*C.at(col_A,col_B); }
}
}
}
#endif
}
else
{
for(uword col_A=0; col_A < A_n_cols; ++col_A)
{
// col_A is interpreted as row_A when storing the results in matrix C
const in_eT1* A_coldata = A.colptr(col_A);
for(uword col_B=0; col_B < B_n_cols; ++col_B)
{
const in_eT2* B_coldata = B.colptr(col_B);
out_eT acc = out_eT(0);
for(uword i=0; i < B_n_rows; ++i)
{
acc += upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]) * upgrade_val<in_eT1,in_eT2>::apply(B_coldata[i]);
}
if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,col_B) = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C.at(col_A,col_B) = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C.at(col_A,col_B) = acc + beta*C.at(col_A,col_B); }
else if( (use_alpha == true ) && (use_beta == true ) ) { C.at(col_A,col_B) = alpha*acc + beta*C.at(col_A,col_B); }
}
}
}
}
else
if( (do_trans_A == false) && (do_trans_B == true) )
{
Mat<in_eT2> B_tmp;
op_strans::apply_mat_noalias(B_tmp, B);
gemm_mixed_large<false, false, use_alpha, use_beta>::apply(C, A, B_tmp, alpha, beta);
}
else
if( (do_trans_A == true) && (do_trans_B == true) )
{
// mat B_tmp = trans(B);
// dgemm_arma<true, false, use_alpha, use_beta>::apply(C, A, B_tmp, alpha, beta);
// By using the trans(A)*trans(B) = trans(B*A) equivalency,
// transpose operations are not needed
podarray<in_eT2> tmp(B_n_cols);
in_eT2* B_rowdata = tmp.memptr();
for(uword row_B=0; row_B < B_n_rows; ++row_B)
{
tmp.copy_row(B, row_B);
for(uword col_A=0; col_A < A_n_cols; ++col_A)
{
const in_eT1* A_coldata = A.colptr(col_A);
out_eT acc = out_eT(0);
for(uword i=0; i < A_n_rows; ++i)
{
acc += upgrade_val<in_eT1,in_eT2>::apply(B_rowdata[i]) * upgrade_val<in_eT1,in_eT2>::apply(A_coldata[i]);
}
if( (use_alpha == false) && (use_beta == false) ) { C.at(col_A,row_B) = acc; }
else if( (use_alpha == true ) && (use_beta == false) ) { C.at(col_A,row_B) = alpha*acc; }
else if( (use_alpha == false) && (use_beta == true ) ) { C.at(col_A,row_B) = acc + beta*C.at(col_A,row_B); }
else if( (use_alpha == true ) && (use_beta == true ) ) { C.at(col_A,row_B) = alpha*acc + beta*C.at(col_A,row_B); }
}
}
}
}
};
//! \brief
//! Matrix multplication where the matrices have differing element types.
template<const bool do_trans_A=false, const bool do_trans_B=false, const bool use_alpha=false, const bool use_beta=false>
class gemm_mixed
{
public:
//! immediate multiplication of matrices A and B, storing the result in C
template<typename out_eT, typename in_eT1, typename in_eT2>
inline
static
void
apply
(
Mat<out_eT>& C,
const Mat<in_eT1>& A,
const Mat<in_eT2>& B,
const out_eT alpha = out_eT(1),
const out_eT beta = out_eT(0)
)
{
arma_extra_debug_sigprint();
if((is_cx<in_eT1>::yes && do_trans_A) || (is_cx<in_eT2>::yes && do_trans_B))
{
// better-than-nothing handling of hermitian transpose
Mat<in_eT1> tmp_A;
Mat<in_eT2> tmp_B;
const bool predo_trans_A = ( (do_trans_A == true) && (is_cx<in_eT1>::yes) );
const bool predo_trans_B = ( (do_trans_B == true) && (is_cx<in_eT2>::yes) );
if(predo_trans_A) { op_htrans::apply_mat_noalias(tmp_A, A); }
if(predo_trans_B) { op_htrans::apply_mat_noalias(tmp_B, B); }
const Mat<in_eT1>& AA = (predo_trans_A == false) ? A : tmp_A;
const Mat<in_eT2>& BB = (predo_trans_B == false) ? B : tmp_B;
gemm_mixed_large<((predo_trans_A) ? false : do_trans_A), ((predo_trans_B) ? false : do_trans_B), use_alpha, use_beta>::apply(C, AA, BB, alpha, beta);
}
else
{
gemm_mixed_large<do_trans_A, do_trans_B, use_alpha, use_beta>::apply(C, A, B, alpha, beta);
}
}
};
//! @}
|