1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup sympd_helper
//! @{
namespace sympd_helper
{
// computationally inexpensive algorithm to guess whether a matrix is positive definite:
// (1) ensure the matrix is symmetric/hermitian (within a tolerance)
// (2) ensure the diagonal entries are real and greater than zero
// (3) ensure that the value with largest modulus is on the main diagonal
// (4) ensure rudimentary diagonal dominance: (real(A_ii) + real(A_jj)) > 2*abs(real(A_ij))
// the above conditions are necessary, but not sufficient;
// doing it properly would be too computationally expensive for our purposes
// more info:
// http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
// http://mathworld.wolfram.com/DiagonallyDominantMatrix.html
template<uword threshold, typename eT>
inline
typename enable_if2<is_cx<eT>::no, bool>::result
guess_sympd_worker(const Mat<eT>& A)
{
arma_extra_debug_sigprint();
if((A.n_rows != A.n_cols) || (A.n_rows < threshold)) { return false; }
const eT tol = eT(100) * std::numeric_limits<eT>::epsilon(); // allow some leeway
const uword N = A.n_rows;
const eT* A_mem = A.memptr();
const eT* A_col = A_mem;
eT max_diag = eT(0);
for(uword j=0; j < N; ++j)
{
const eT A_jj = A_col[j];
if(A_jj <= eT(0)) { return false; }
max_diag = (A_jj > max_diag) ? A_jj : max_diag;
A_col += N;
}
A_col = A_mem;
const uword Nm1 = N-1;
const uword Np1 = N+1;
for(uword j=0; j < Nm1; ++j)
{
const eT A_jj = A_col[j];
const uword jp1 = j+1;
const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1));
const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]);
for(uword i=jp1; i < N; ++i)
{
const eT A_ij = A_col[i];
const eT A_ji = (*A_ji_ptr);
const eT A_ij_abs = (std::abs)(A_ij);
const eT A_ji_abs = (std::abs)(A_ji);
// if( (A_ij_abs >= max_diag) || (A_ji_abs >= max_diag) ) { return false; }
if(A_ij_abs >= max_diag) { return false; }
const eT A_delta = (std::abs)(A_ij - A_ji);
const eT A_abs_max = (std::max)(A_ij_abs, A_ji_abs);
if( (A_delta > tol) && (A_delta > (A_abs_max*tol)) ) { return false; }
const eT A_ii = (*A_ii_ptr);
if( (A_ij_abs + A_ij_abs) >= (A_ii + A_jj) ) { return false; }
A_ji_ptr += N;
A_ii_ptr += Np1;
}
A_col += N;
}
return true;
}
template<uword threshold, typename eT>
inline
typename enable_if2<is_cx<eT>::yes, bool>::result
guess_sympd_worker(const Mat<eT>& A)
{
arma_extra_debug_sigprint();
typedef typename get_pod_type<eT>::result T;
if((A.n_rows != A.n_cols) || (A.n_rows < threshold)) { return false; }
const T tol = T(100) * std::numeric_limits<T>::epsilon(); // allow some leeway
const uword N = A.n_rows;
const eT* A_mem = A.memptr();
const eT* A_col = A_mem;
T max_diag = T(0);
for(uword j=0; j < N; ++j)
{
const eT& A_jj = A_col[j];
const T A_jj_real = std::real(A_jj);
const T A_jj_imag = std::imag(A_jj);
if( (A_jj_real <= T(0)) || (std::abs(A_jj_imag) > tol) ) { return false; }
max_diag = (A_jj_real > max_diag) ? A_jj_real : max_diag;
A_col += N;
}
const T square_max_diag = max_diag * max_diag;
if(arma_isfinite(square_max_diag) == false) { return false; }
A_col = A_mem;
const uword Nm1 = N-1;
const uword Np1 = N+1;
for(uword j=0; j < Nm1; ++j)
{
const uword jp1 = j+1;
const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1));
const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]);
const T A_jj_real = std::real(A_col[j]);
for(uword i=jp1; i < N; ++i)
{
const eT& A_ij = A_col[i];
const T A_ij_real = std::real(A_ij);
const T A_ij_imag = std::imag(A_ij);
// avoid using std::abs(), as that is time consuming due to division and std::sqrt()
const T square_A_ij_abs = (A_ij_real * A_ij_real) + (A_ij_imag * A_ij_imag);
if(arma_isfinite(square_A_ij_abs) == false) { return false; }
if(square_A_ij_abs >= square_max_diag) { return false; }
const T A_ij_real_abs = (std::abs)(A_ij_real);
const T A_ij_imag_abs = (std::abs)(A_ij_imag);
const eT& A_ji = (*A_ji_ptr);
const T A_ji_real = std::real(A_ji);
const T A_ji_imag = std::imag(A_ji);
const T A_ji_real_abs = (std::abs)(A_ji_real);
const T A_ji_imag_abs = (std::abs)(A_ji_imag);
const T A_real_delta = (std::abs)(A_ij_real - A_ji_real);
const T A_real_abs_max = (std::max)(A_ij_real_abs, A_ji_real_abs);
if( (A_real_delta > tol) && (A_real_delta > (A_real_abs_max*tol)) ) { return false; }
const T A_imag_delta = (std::abs)(A_ij_imag + A_ji_imag); // take into account complex conjugate
const T A_imag_abs_max = (std::max)(A_ij_imag_abs, A_ji_imag_abs);
if( (A_imag_delta > tol) && (A_imag_delta > (A_imag_abs_max*tol)) ) { return false; }
const T A_ii_real = std::real(*A_ii_ptr);
if( (A_ij_real_abs + A_ij_real_abs) >= (A_ii_real + A_jj_real) ) { return false; }
A_ji_ptr += N;
A_ii_ptr += Np1;
}
A_col += N;
}
return true;
}
template<typename eT>
inline
bool
guess_sympd(const Mat<eT>& A)
{
// analyse matrices with size >= 16x16
return guess_sympd_worker<16u>(A);
}
template<typename eT>
inline
bool
guess_sympd_anysize(const Mat<eT>& A)
{
// analyse matrices with size >= 2x2
return guess_sympd_worker<2u>(A);
}
} // end of namespace sympd_helper
//! @}
|