1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
//
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreatePackTfLiteModel(tflite::BuiltinOperator packOperatorCode,
tflite::TensorType tensorType,
std::vector<int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
const int32_t inputTensorNum,
unsigned int axis = 0,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
std::vector<int32_t> operatorInputs{};
const std::vector<int32_t> operatorOutputs{inputTensorNum};
std::vector<int> subgraphInputs{};
const std::vector<int> subgraphOutputs{inputTensorNum};
std::vector<flatbuffers::Offset<Tensor>> tensors(inputTensorNum + 1);
for (int i = 0; i < inputTensorNum; ++i)
{
tensors[i] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("input" + std::to_string(i)),
quantizationParameters);
// Add number of inputs to vector.
operatorInputs.push_back(i);
subgraphInputs.push_back(i);
}
// Create output tensor
tensors[inputTensorNum] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
// create operator
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_PackOptions;
flatbuffers::Offset<void> operatorBuiltinOptions =
CreatePackOptions(flatBufferBuilder, inputTensorNum, axis).Union();
flatbuffers::Offset <Operator> packOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&packOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Pack Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, packOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void PackTest(tflite::BuiltinOperator packOperatorCode,
tflite::TensorType tensorType,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& expectedOutputShape,
std::vector<std::vector<T>>& inputValues,
std::vector<T>& expectedOutputValues,
unsigned int axis = 0,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreatePackTfLiteModel(packOperatorCode,
tensorType,
inputShape,
expectedOutputShape,
inputValues.size(),
axis,
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
// Set input data for all input tensors.
for (unsigned int i = 0; i < inputValues.size(); ++i)
{
auto inputTensorValues = inputValues[i];
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputTensorValues, i) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputTensorValues, i) == kTfLiteOk);
}
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace
|