1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
//
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
template <typename T>
std::vector<char> CreatePadTfLiteModel(
tflite::BuiltinOperator padOperatorCode,
tflite::TensorType tensorType,
tflite::MirrorPadMode paddingMode,
const std::vector<int32_t>& inputTensorShape,
const std::vector<int32_t>& paddingTensorShape,
const std::vector<int32_t>& outputTensorShape,
const std::vector<int32_t>& paddingDim,
const std::vector<T> paddingValue,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
auto inputTensor = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
auto paddingTensor = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(paddingTensorShape.data(),
paddingTensorShape.size()),
tflite::TensorType_INT32,
1,
flatBufferBuilder.CreateString("padding"));
auto outputTensor = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
std::vector<flatbuffers::Offset<Tensor>> tensors = { inputTensor, paddingTensor, outputTensor};
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(paddingDim.data()),
sizeof(int32_t) * paddingDim.size())));
buffers.push_back(CreateBuffer(flatBufferBuilder));
std::vector<int32_t> operatorInputs;
std::vector<int> subgraphInputs;
tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_PadOptions;
flatbuffers::Offset<void> operatorBuiltinOptions;
if (padOperatorCode == tflite::BuiltinOperator_PAD)
{
operatorInputs = {{ 0, 1 }};
subgraphInputs = {{ 0, 1 }};
operatorBuiltinOptions = CreatePadOptions(flatBufferBuilder).Union();
}
else if(padOperatorCode == tflite::BuiltinOperator_MIRROR_PAD)
{
operatorInputs = {{ 0, 1 }};
subgraphInputs = {{ 0, 1 }};
operatorBuiltinOptionsType = BuiltinOptions_MirrorPadOptions;
operatorBuiltinOptions = CreateMirrorPadOptions(flatBufferBuilder, paddingMode).Union();
}
else if (padOperatorCode == tflite::BuiltinOperator_PADV2)
{
buffers.push_back(
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(paddingValue.data()),
sizeof(T))));
const std::vector<int32_t> shape = { 1 };
auto padValueTensor = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(shape.data(),
shape.size()),
tensorType,
3,
flatBufferBuilder.CreateString("paddingValue"),
quantizationParameters);
tensors.push_back(padValueTensor);
operatorInputs = {{ 0, 1, 3 }};
subgraphInputs = {{ 0, 1, 3 }};
operatorBuiltinOptionsType = BuiltinOptions_PadV2Options;
operatorBuiltinOptions = CreatePadV2Options(flatBufferBuilder).Union();
}
// create operator
const std::vector<int32_t> operatorOutputs{ 2 };
flatbuffers::Offset <Operator> paddingOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOptions);
const std::vector<int> subgraphOutputs{ 2 };
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&paddingOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Pad Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
padOperatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void PadTest(tflite::BuiltinOperator padOperatorCode,
tflite::TensorType tensorType,
const std::vector<armnn::BackendId>& backends,
const std::vector<int32_t>& inputShape,
const std::vector<int32_t>& paddingShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<int32_t>& paddingDim,
std::vector<T>& expectedOutputValues,
T paddingValue,
float quantScale = 1.0f,
int quantOffset = 0,
tflite::MirrorPadMode paddingMode = tflite::MirrorPadMode_SYMMETRIC)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreatePadTfLiteModel<T>(padOperatorCode,
tensorType,
paddingMode,
inputShape,
paddingShape,
outputShape,
paddingDim,
{paddingValue},
quantScale,
quantOffset);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace
|