1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
//
// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <flatbuffers/flexbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/kernels/custom_ops_register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
#if defined(ARMNN_POST_TFLITE_2_5)
std::vector<uint8_t> CreateCustomOptions(int, int, int, int, int, int, TfLitePadding);
std::vector<char> CreatePooling3dTfLiteModel(
std::string poolType,
tflite::TensorType tensorType,
const std::vector<int32_t>& inputTensorShape,
const std::vector<int32_t>& outputTensorShape,
TfLitePadding padding = kTfLitePaddingSame,
int32_t strideWidth = 0,
int32_t strideHeight = 0,
int32_t strideDepth = 0,
int32_t filterWidth = 0,
int32_t filterHeight = 0,
int32_t filterDepth = 0,
tflite::ActivationFunctionType fusedActivation = tflite::ActivationFunctionType_NONE,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ quantScale }),
flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
// Create the input and output tensors
std::array<flatbuffers::Offset<Tensor>, 2> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
0,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
// Create the custom options from the function below
std::vector<uint8_t> customOperatorOptions = CreateCustomOptions(strideHeight, strideWidth, strideDepth,
filterHeight, filterWidth, filterDepth, padding);
// opCodeIndex is created as a uint8_t to avoid map lookup
uint8_t opCodeIndex = 0;
// Set the operator name based on the PoolType passed in from the test case
std::string opName = "";
if (poolType == "kMax")
{
opName = "MaxPool3D";
}
else
{
opName = "AveragePool3D";
}
// To create a custom operator code you pass in the builtin code for custom operators and the name of the custom op
flatbuffers::Offset<OperatorCode> operatorCode = CreateOperatorCodeDirect(flatBufferBuilder,
tflite::BuiltinOperator_CUSTOM,
opName.c_str());
// Create the Operator using the opCodeIndex and custom options. Also sets builtin options to none.
const std::vector<int32_t> operatorInputs{ 0 };
const std::vector<int32_t> operatorOutputs{ 1 };
flatbuffers::Offset<Operator> poolingOperator =
CreateOperator(flatBufferBuilder,
opCodeIndex,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
tflite::BuiltinOptions_NONE,
0,
flatBufferBuilder.CreateVector<uint8_t>(customOperatorOptions),
tflite::CustomOptionsFormat_FLEXBUFFERS);
// Create the subgraph using the operator created above.
const std::vector<int> subgraphInputs{ 0 };
const std::vector<int> subgraphOutputs{ 1 };
flatbuffers::Offset<SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&poolingOperator, 1));
flatbuffers::Offset<flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Pooling3d Operator Model");
// Create the model using operatorCode and the subgraph.
flatbuffers::Offset<Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template<typename T>
void Pooling3dTest(std::string poolType,
tflite::TensorType tensorType,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& expectedOutputValues,
TfLitePadding padding = kTfLitePaddingSame,
int32_t strideWidth = 0,
int32_t strideHeight = 0,
int32_t strideDepth = 0,
int32_t filterWidth = 0,
int32_t filterHeight = 0,
int32_t filterDepth = 0,
tflite::ActivationFunctionType fusedActivation = tflite::ActivationFunctionType_NONE,
float quantScale = 1.0f,
int quantOffset = 0)
{
using namespace delegateTestInterpreter;
// Create the single op model buffer
std::vector<char> modelBuffer = CreatePooling3dTfLiteModel(poolType,
tensorType,
inputShape,
outputShape,
padding,
strideWidth,
strideHeight,
strideDepth,
filterWidth,
filterHeight,
filterDepth,
fusedActivation,
quantScale,
quantOffset);
std::string opType = "";
if (poolType == "kMax")
{
opType = "MaxPool3D";
}
else
{
opType = "AveragePool3D";
}
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer, opType);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends, opType);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
// Function to create the flexbuffer custom options for the custom pooling3d operator.
std::vector<uint8_t> CreateCustomOptions(int strideHeight, int strideWidth, int strideDepth,
int filterHeight, int filterWidth, int filterDepth, TfLitePadding padding)
{
auto flex_builder = std::make_unique<flexbuffers::Builder>();
size_t map_start = flex_builder->StartMap();
flex_builder->String("data_format", "NDHWC");
// Padding is created as a key and padding type. Only VALID and SAME supported
if (padding == kTfLitePaddingValid)
{
flex_builder->String("padding", "VALID");
}
else
{
flex_builder->String("padding", "SAME");
}
// Vector of filter dimensions in order ( 1, Depth, Height, Width, 1 )
auto start = flex_builder->StartVector("ksize");
flex_builder->Add(1);
flex_builder->Add(filterDepth);
flex_builder->Add(filterHeight);
flex_builder->Add(filterWidth);
flex_builder->Add(1);
// EndVector( start, bool typed, bool fixed)
flex_builder->EndVector(start, true, false);
// Vector of stride dimensions in order ( 1, Depth, Height, Width, 1 )
auto stridesStart = flex_builder->StartVector("strides");
flex_builder->Add(1);
flex_builder->Add(strideDepth);
flex_builder->Add(strideHeight);
flex_builder->Add(strideWidth);
flex_builder->Add(1);
// EndVector( stridesStart, bool typed, bool fixed)
flex_builder->EndVector(stridesStart, true, false);
flex_builder->EndMap(map_start);
flex_builder->Finish();
return flex_builder->GetBuffer();
}
#endif
} // anonymous namespace
|