1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
//
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <armnnUtils/FloatingPointComparison.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreateSoftmaxTfLiteModel(tflite::BuiltinOperator softmaxOperatorCode,
tflite::TensorType tensorType,
const std::vector <int32_t>& tensorShape,
float beta)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
std::array<flatbuffers::Offset<Tensor>, 2> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
1);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(tensorShape.data(),
tensorShape.size()),
tensorType,
2);
const std::vector<int32_t> operatorInputs({0});
const std::vector<int32_t> operatorOutputs({1});
flatbuffers::Offset<Operator> softmaxOperator;
flatbuffers::Offset<flatbuffers::String> modelDescription;
flatbuffers::Offset<OperatorCode> operatorCode;
switch (softmaxOperatorCode)
{
case tflite::BuiltinOperator_SOFTMAX:
softmaxOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
BuiltinOptions_SoftmaxOptions,
CreateSoftmaxOptions(flatBufferBuilder, beta).Union());
modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: Softmax Operator Model");
operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_SOFTMAX);
break;
case tflite::BuiltinOperator_LOG_SOFTMAX:
softmaxOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
BuiltinOptions_LogSoftmaxOptions,
CreateLogSoftmaxOptions(flatBufferBuilder).Union());
flatBufferBuilder.CreateString("ArmnnDelegate: Log-Softmax Operator Model");
operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_LOG_SOFTMAX);
break;
default:
break;
}
const std::vector<int32_t> subgraphInputs({0});
const std::vector<int32_t> subgraphOutputs({1});
flatbuffers::Offset<SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&softmaxOperator, 1));
flatbuffers::Offset<Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
void SoftmaxTest(tflite::BuiltinOperator softmaxOperatorCode,
tflite::TensorType tensorType,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& shape,
std::vector<float>& inputValues,
std::vector<float>& expectedOutputValues,
float beta = 0)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateSoftmaxTfLiteModel(softmaxOperatorCode,
tensorType,
shape,
beta);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<float> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<float> armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, shape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
/// Convenience function to run softmax and log-softmax test cases
/// \param operatorCode tflite::BuiltinOperator_SOFTMAX or tflite::BuiltinOperator_LOG_SOFTMAX
/// \param backends armnn backends to target
/// \param beta multiplicative parameter to the softmax function
/// \param expectedOutput to be checked against transformed input
void SoftmaxTestCase(tflite::BuiltinOperator operatorCode,
std::vector<armnn::BackendId> backends, float beta, std::vector<float> expectedOutput) {
std::vector<float> input = {
1.0, 2.5, 3.0, 4.5, 5.0,
-1.0, -2.5, -3.0, -4.5, -5.0};
std::vector<int32_t> shape = {2, 5};
SoftmaxTest(operatorCode,
tflite::TensorType_FLOAT32,
backends,
shape,
input,
expectedOutput,
beta);
}
} // anonymous namespace
|