1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
//
// Copyright © 2021, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreateSpaceDepthTfLiteModel(tflite::BuiltinOperator spaceDepthOperatorCode,
tflite::TensorType tensorType,
const std::vector <int32_t>& inputTensorShape,
const std::vector <int32_t>& outputTensorShape,
int32_t blockSize)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
auto quantizationParameters =
CreateQuantizationParameters(flatBufferBuilder,
0,
0,
flatBufferBuilder.CreateVector<float>({ 1.0f }),
flatBufferBuilder.CreateVector<int64_t>({ 0 }));
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
std::array<flatbuffers::Offset<Tensor>, 2> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
tensorType,
1,
flatBufferBuilder.CreateString("input"),
quantizationParameters);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,
2,
flatBufferBuilder.CreateString("output"),
quantizationParameters);
const std::vector<int32_t> operatorInputs({0});
const std::vector<int32_t> operatorOutputs({1});
flatbuffers::Offset<Operator> spaceDepthOperator;
flatbuffers::Offset<flatbuffers::String> modelDescription;
flatbuffers::Offset<OperatorCode> operatorCode;
switch (spaceDepthOperatorCode)
{
case tflite::BuiltinOperator_SPACE_TO_DEPTH:
spaceDepthOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
BuiltinOptions_SpaceToDepthOptions,
CreateSpaceToDepthOptions(flatBufferBuilder, blockSize).Union());
modelDescription = flatBufferBuilder.CreateString("ArmnnDelegate: SPACE_TO_DEPTH Operator Model");
operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_SPACE_TO_DEPTH);
break;
case tflite::BuiltinOperator_DEPTH_TO_SPACE:
spaceDepthOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
BuiltinOptions_DepthToSpaceOptions,
CreateDepthToSpaceOptions(flatBufferBuilder, blockSize).Union());
flatBufferBuilder.CreateString("ArmnnDelegate: DEPTH_TO_SPACE Operator Model");
operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_DEPTH_TO_SPACE);
break;
default:
break;
}
const std::vector<int32_t> subgraphInputs({0});
const std::vector<int32_t> subgraphOutputs({1});
flatbuffers::Offset<SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&spaceDepthOperator, 1));
flatbuffers::Offset<Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void SpaceDepthTest(tflite::BuiltinOperator spaceDepthOperatorCode,
tflite::TensorType tensorType,
std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<T>& expectedOutputValues,
int32_t blockSize = 2)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateSpaceDepthTfLiteModel(spaceDepthOperatorCode,
tensorType,
inputShape,
outputShape,
blockSize);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace
|