1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
//
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "TestUtils.hpp"
namespace armnnDelegate
{
void CompareData(bool tensor1[], bool tensor2[], size_t tensorSize)
{
auto compareBool = [](auto a, auto b) {return (((a == 0) && (b == 0)) || ((a != 0) && (b != 0)));};
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(compareBool(tensor1[i], tensor2[i]));
}
}
void CompareData(std::vector<bool>& tensor1, std::vector<bool>& tensor2, size_t tensorSize)
{
auto compareBool = [](auto a, auto b) {return (((a == 0) && (b == 0)) || ((a != 0) && (b != 0)));};
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(compareBool(tensor1[i], tensor2[i]));
}
}
void CompareData(float tensor1[], float tensor2[], size_t tensorSize)
{
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(tensor1[i] == doctest::Approx( tensor2[i] ));
}
}
void CompareData(float tensor1[], float tensor2[], size_t tensorSize, float percentTolerance)
{
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(std::max(tensor1[i], tensor2[i]) - std::min(tensor1[i], tensor2[i]) <=
std::abs(tensor1[i]*percentTolerance/100));
}
}
void CompareData(uint8_t tensor1[], uint8_t tensor2[], size_t tensorSize)
{
uint8_t tolerance = 1;
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(std::max(tensor1[i], tensor2[i]) - std::min(tensor1[i], tensor2[i]) <= tolerance);
}
}
void CompareData(int16_t tensor1[], int16_t tensor2[], size_t tensorSize)
{
int16_t tolerance = 1;
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(std::max(tensor1[i], tensor2[i]) - std::min(tensor1[i], tensor2[i]) <= tolerance);
}
}
void CompareData(int32_t tensor1[], int32_t tensor2[], size_t tensorSize)
{
int32_t tolerance = 1;
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(std::max(tensor1[i], tensor2[i]) - std::min(tensor1[i], tensor2[i]) <= tolerance);
}
}
void CompareData(int8_t tensor1[], int8_t tensor2[], size_t tensorSize)
{
int8_t tolerance = 1;
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(std::max(tensor1[i], tensor2[i]) - std::min(tensor1[i], tensor2[i]) <= tolerance);
}
}
void CompareData(Half tensor1[], Half tensor2[], size_t tensorSize)
{
for (size_t i = 0; i < tensorSize; i++)
{
CHECK(tensor1[i] == doctest::Approx( tensor2[i] ));
}
}
void CompareData(TfLiteFloat16 tensor1[], TfLiteFloat16 tensor2[], size_t tensorSize)
{
uint16_t tolerance = 1;
for (size_t i = 0; i < tensorSize; i++)
{
uint16_t tensor1Data = tensor1[i].data;
uint16_t tensor2Data = tensor2[i].data;
CHECK(std::max(tensor1Data, tensor2Data) - std::min(tensor1Data, tensor2Data) <= tolerance);
}
}
void CompareData(TfLiteFloat16 tensor1[], Half tensor2[], size_t tensorSize) {
uint16_t tolerance = 1;
for (size_t i = 0; i < tensorSize; i++)
{
uint16_t tensor1Data = tensor1[i].data;
uint16_t tensor2Data = half_float::detail::float2half<std::round_indeterminate, float>(tensor2[i]);
CHECK(std::max(tensor1Data, tensor2Data) - std::min(tensor1Data, tensor2Data) <= tolerance);
}
}
void CompareOutputShape(const std::vector<int32_t>& tfLiteDelegateShape,
const std::vector<int32_t>& armnnDelegateShape,
const std::vector<int32_t>& expectedOutputShape)
{
CHECK(expectedOutputShape.size() == tfLiteDelegateShape.size());
CHECK(expectedOutputShape.size() == armnnDelegateShape.size());
for (size_t i = 0; i < expectedOutputShape.size(); i++)
{
CHECK(expectedOutputShape[i] == armnnDelegateShape[i]);
CHECK(tfLiteDelegateShape[i] == expectedOutputShape[i]);
CHECK(tfLiteDelegateShape[i] == armnnDelegateShape[i]);
}
}
} // namespace armnnDelegate
|