1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
//
// Copyright © 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreateTileTfLiteModel(tflite::BuiltinOperator operatorCode,
tflite::TensorType inputTensorType,
const std::vector<int32_t>& inputTensorShape,
const std::vector<int32_t>& multiplesTensorData,
const std::vector<int32_t>& multiplesTensorShape,
const std::vector<int32_t>& outputTensorShape)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder));
buffers.push_back(CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(
reinterpret_cast<const uint8_t*>(multiplesTensorData.data()),
sizeof(int32_t) * multiplesTensorData.size())));
buffers.push_back(CreateBuffer(flatBufferBuilder));
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
inputTensorShape.size()),
inputTensorType,
1,
flatBufferBuilder.CreateString("input_tensor"));
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(multiplesTensorShape.data(),
multiplesTensorShape.size()),
TensorType_INT32,
2,
flatBufferBuilder.CreateString("axis_input_tensor"));
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
inputTensorType,
3,
flatBufferBuilder.CreateString("output_tensor"));
// Create Operator
tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
flatbuffers::Offset<void> operatorBuiltinOption = 0;
const std::vector<int> operatorInputs {0, 1};
const std::vector<int> operatorOutputs {2};
flatbuffers::Offset<Operator> tileOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
operatorBuiltinOptionsType,
operatorBuiltinOption);
const std::vector<int> subgraphInputs{0, 1};
const std::vector<int> subgraphOutputs{2};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&tileOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Tile Operator Model");
flatbuffers::Offset <OperatorCode> opCode = CreateOperatorCode(flatBufferBuilder, operatorCode);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&opCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
void TileFP32TestImpl(tflite::BuiltinOperator operatorCode,
std::vector<armnn::BackendId>& backends,
std::vector<float>& inputValues,
std::vector<int32_t> inputShape,
std::vector<int32_t> multiplesValues,
std::vector<int32_t> multiplesShapes,
std::vector<float>& expectedOutputValues,
std::vector<int32_t> expectedOutputShape)
{
using namespace delegateTestInterpreter;
std::vector<char> modelBuffer = CreateTileTfLiteModel(operatorCode,
::tflite::TensorType::TensorType_FLOAT32,
inputShape,
multiplesValues,
multiplesShapes,
expectedOutputShape);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<int32_t>(multiplesValues, 1) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<float> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<float>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<float>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<int32_t>(multiplesValues, 1) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<float> armnnOutputValues = armnnInterpreter.GetOutputResult<float>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<float>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
} // anonymous namespace
|