1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
//
// Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "TestUtils.hpp"
#include <armnn_delegate.hpp>
#include <DelegateTestInterpreter.hpp>
#include <flatbuffers/flatbuffers.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/version.h>
#include <schema_generated.h>
#include <doctest/doctest.h>
namespace
{
std::vector<char> CreateTransposeTfLiteModel(tflite::TensorType tensorType,
const std::vector <int32_t>& input0TensorShape,
const std::vector <int32_t>& inputPermVecShape,
const std::vector <int32_t>& outputTensorShape,
const std::vector<int32_t>& inputPermVec)
{
using namespace tflite;
flatbuffers::FlatBufferBuilder flatBufferBuilder;
flatbuffers::Offset<tflite::Buffer> buffers[4]{
CreateBuffer(flatBufferBuilder),
CreateBuffer(flatBufferBuilder),
CreateBuffer(flatBufferBuilder,
flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(inputPermVec.data()),
sizeof(int32_t) * inputPermVec.size())),
CreateBuffer(flatBufferBuilder)
};
std::array<flatbuffers::Offset<Tensor>, 3> tensors;
tensors[0] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
input0TensorShape.size()),
tensorType, 1);
tensors[1] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(inputPermVecShape.data(),
inputPermVecShape.size()),
tflite::TensorType_INT32, 2,
flatBufferBuilder.CreateString("permutation_vector"));
tensors[2] = CreateTensor(flatBufferBuilder,
flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
outputTensorShape.size()),
tensorType,3);
const std::vector<int32_t> operatorInputs{0, 1};
const std::vector<int32_t> operatorOutputs{2};
flatbuffers::Offset <Operator> transposeOperator =
CreateOperator(flatBufferBuilder,
0,
flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
BuiltinOptions_TransposeOptions,
CreateTransposeOptions(flatBufferBuilder).Union());
const std::vector<int> subgraphInputs{0, 1};
const std::vector<int> subgraphOutputs{2};
flatbuffers::Offset <SubGraph> subgraph =
CreateSubGraph(flatBufferBuilder,
flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
flatBufferBuilder.CreateVector(&transposeOperator, 1));
flatbuffers::Offset <flatbuffers::String> modelDescription =
flatBufferBuilder.CreateString("ArmnnDelegate: Transpose Operator Model");
flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
tflite::BuiltinOperator_TRANSPOSE);
flatbuffers::Offset <Model> flatbufferModel =
CreateModel(flatBufferBuilder,
TFLITE_SCHEMA_VERSION,
flatBufferBuilder.CreateVector(&operatorCode, 1),
flatBufferBuilder.CreateVector(&subgraph, 1),
modelDescription,
flatBufferBuilder.CreateVector(buffers, 4));
flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
}
template <typename T>
void TransposeTest(std::vector<armnn::BackendId>& backends,
std::vector<int32_t>& inputShape,
std::vector<int32_t>& inputPermVecShape,
std::vector<int32_t>& outputShape,
std::vector<T>& inputValues,
std::vector<int32_t>& inputPermVec,
std::vector<T>& expectedOutputValues)
{
using namespace delegateTestInterpreter;
// Create model
std::vector<char> modelBuffer = CreateTransposeTfLiteModel(::tflite::TensorType_FLOAT32,
inputShape,
inputPermVecShape,
outputShape,
inputPermVec);
// Setup interpreter with just TFLite Runtime.
auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(tfLiteInterpreter.FillInputTensor<int32_t>(inputPermVec, 1) == kTfLiteOk);
CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
std::vector<T> tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> tfLiteOutputShape = tfLiteInterpreter.GetOutputShape(0);
// Setup interpreter with Arm NN Delegate applied.
auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
CHECK(armnnInterpreter.FillInputTensor<int32_t>(inputPermVec, 1) == kTfLiteOk);
CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
std::vector<T> armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
std::vector<int32_t> armnnOutputShape = armnnInterpreter.GetOutputShape(0);
armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
tfLiteInterpreter.Cleanup();
armnnInterpreter.Cleanup();
}
}
|