1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
//
// Copyright © 2017, 2021-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include <armnnTestUtils/PredicateResult.hpp>
#include <armnn/Tensor.hpp>
#include <armnn/utility/Assert.hpp>
#include <armnnUtils/FloatingPointComparison.hpp>
#include <armnnUtils/QuantizeHelper.hpp>
#include <doctest/doctest.h>
#include <array>
#include <cmath>
#include <random>
#include <vector>
constexpr float g_FloatCloseToZeroTolerance = 1.0e-6f;
template<typename T, bool isQuantized = true>
struct SelectiveComparer
{
static bool Compare(T a, T b)
{
return (std::max(a, b) - std::min(a, b)) <= 1;
}
};
template<typename T>
struct SelectiveComparer<T, false>
{
static bool Compare(T a, T b)
{
// If a or b is zero, percent_tolerance does an exact match, so compare to a small, constant tolerance instead.
if (a == 0.0f || b == 0.0f)
{
return std::abs(a - b) <= g_FloatCloseToZeroTolerance;
}
if (std::isinf(a) && a == b)
{
return true;
}
if (std::isnan(a) && std::isnan(b))
{
return true;
}
// For unquantized floats we use a tolerance of 1%.
return armnnUtils::within_percentage_tolerance(a, b);
}
};
template<typename T>
bool SelectiveCompare(T a, T b)
{
return SelectiveComparer<T, armnn::IsQuantizedType<T>()>::Compare(a, b);
};
template<typename T>
bool SelectiveCompareBoolean(T a, T b)
{
return (((a == 0) && (b == 0)) || ((a != 0) && (b != 0)));
};
template <typename T>
armnn::PredicateResult CompareTensors(const std::vector<T>& actualData,
const std::vector<T>& expectedData,
const armnn::TensorShape& actualShape,
const armnn::TensorShape& expectedShape,
bool compareBoolean = false,
bool isDynamic = false)
{
if (actualData.size() != expectedData.size())
{
armnn::PredicateResult res(false);
res.Message() << "Different data size ["
<< actualData.size()
<< "!="
<< expectedData.size()
<< "]";
return res;
}
// Support for comparison between empty tensors
if (actualData.size() == 0 && expectedData.size() == 0)
{
armnn::PredicateResult comparisonResult(true);
return comparisonResult;
}
if (actualShape.GetNumDimensions() != expectedShape.GetNumDimensions())
{
armnn::PredicateResult res(false);
res.Message() << "Different number of dimensions ["
<< actualShape.GetNumDimensions()
<< "!="
<< expectedShape.GetNumDimensions()
<< "]";
return res;
}
if (actualShape.GetNumElements() != expectedShape.GetNumElements())
{
armnn::PredicateResult res(false);
res.Message() << "Different number of elements ["
<< actualShape.GetNumElements()
<< "!="
<< expectedShape.GetNumElements()
<< "]";
return res;
}
unsigned int numberOfDimensions = actualShape.GetNumDimensions();
if (!isDynamic)
{
// Checks they are same shape.
for (unsigned int i = 0; i < numberOfDimensions; ++i)
{
if (actualShape[i] != expectedShape[i])
{
armnn::PredicateResult res(false);
res.Message() << "Different shapes ["
<< actualShape[i]
<< "!="
<< expectedShape[i]
<< "]";
return res;
}
}
}
// Fun iteration over n dimensions.
std::vector<unsigned int> indices;
for (unsigned int i = 0; i < numberOfDimensions; i++)
{
indices.emplace_back(0);
}
std::stringstream errorString;
int numFailedElements = 0;
constexpr int maxReportedDifferences = 3;
unsigned int index = 0;
// Compare data element by element.
while (true)
{
bool comparison;
// As true for uint8_t is non-zero (1-255) we must have a dedicated compare for Booleans.
if(compareBoolean)
{
comparison = SelectiveCompareBoolean(actualData[index], expectedData[index]);
}
else
{
comparison = SelectiveCompare(actualData[index], expectedData[index]);
}
if (!comparison)
{
++numFailedElements;
if (numFailedElements <= maxReportedDifferences)
{
if (numFailedElements >= 2)
{
errorString << ", ";
}
errorString << "[";
for (unsigned int i = 0; i < numberOfDimensions; ++i)
{
errorString << indices[i];
if (i != numberOfDimensions - 1)
{
errorString << ",";
}
}
errorString << "]";
errorString << " (" << +actualData[index] << " != " << +expectedData[index] << ")";
}
}
++indices[numberOfDimensions - 1];
for (unsigned int i=numberOfDimensions-1; i>0; i--)
{
if (indices[i] == actualShape[i])
{
indices[i] = 0;
++indices[i - 1];
}
}
if (indices[0] == actualShape[0])
{
break;
}
index++;
}
armnn::PredicateResult comparisonResult(true);
if (numFailedElements > 0)
{
comparisonResult.SetResult(false);
comparisonResult.Message() << numFailedElements << " different values at: ";
if (numFailedElements > maxReportedDifferences)
{
errorString << ", ... (and " << (numFailedElements - maxReportedDifferences) << " other differences)";
}
comparisonResult.Message() << errorString.str();
}
return comparisonResult;
}
template <typename T>
std::vector<T> MakeRandomTensor(const armnn::TensorInfo& tensorInfo,
unsigned int seed,
float min = -10.0f,
float max = 10.0f)
{
std::mt19937 gen(seed);
std::uniform_real_distribution<float> dist(min, max);
std::vector<float> init(tensorInfo.GetNumElements());
for (unsigned int i = 0; i < init.size(); i++)
{
init[i] = dist(gen);
}
const float qScale = tensorInfo.GetQuantizationScale();
const int32_t qOffset = tensorInfo.GetQuantizationOffset();
return armnnUtils::QuantizedVector<T>(init, qScale, qOffset);
}
|