1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
# Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
"""Contains CaptureAudioStream class for capturing chunks of audio data from incoming
stream and generic capture_audio function for capturing from files."""
import collections
import time
from queue import Queue
from typing import Generator
import numpy as np
import sounddevice as sd
import soundfile as sf
AudioCaptureParams = collections.namedtuple('AudioCaptureParams',
['dtype', 'overlap', 'min_samples', 'sampling_freq', 'mono'])
def capture_audio(audio_file_path, params_tuple) -> Generator[np.ndarray, None, None]:
"""Creates a generator that yields audio data from a file. Data is padded with
zeros if necessary to make up minimum number of samples.
Args:
audio_file_path: Path to audio file provided by user.
params_tuple: Sampling parameters for model used
Yields:
Blocks of audio data of minimum sample size.
"""
with sf.SoundFile(audio_file_path) as audio_file:
for block in audio_file.blocks(
blocksize=params_tuple.min_samples,
dtype=params_tuple.dtype,
always_2d=True,
fill_value=0,
overlap=params_tuple.overlap
):
if params_tuple.mono and block.shape[0] > 1:
block = np.mean(block, dtype=block.dtype, axis=1)
yield block
class CaptureAudioStream:
def __init__(self, audio_capture_params):
self.audio_capture_params = audio_capture_params
self.collection = np.zeros(self.audio_capture_params.min_samples + self.audio_capture_params.overlap).astype(
dtype=self.audio_capture_params.dtype)
self.is_active = True
self.is_first_window = True
self.duration = False
self.block_count = 0
self.current_block = 0
self.queue = Queue(2)
def set_stream_defaults(self):
"""Discovers input devices on the system and sets default stream parameters."""
print(sd.query_devices())
device = input("Select input device by index or name: ")
try:
sd.default.device = int(device)
except ValueError:
sd.default.device = str(device)
sd.default.samplerate = self.audio_capture_params.sampling_freq
sd.default.blocksize = self.audio_capture_params.min_samples
sd.default.dtype = self.audio_capture_params.dtype
sd.default.channels = 1 if self.audio_capture_params.mono else 2
def set_recording_duration(self, duration):
"""Sets a time duration (in integer seconds) for recording audio. Total time duration is
adjusted to a minimum based on the parameters of the model used. Durations less than 1
result in endless recording.
Args:
duration (int): User-provided command line argument for time duration of recording.
"""
if duration > 0:
min_duration = int(
np.ceil(self.audio_capture_params.min_samples / self.audio_capture_params.sampling_freq)
)
if duration < min_duration:
print(f"Minimum duration must be {min_duration} seconds of audio")
print(f"Setting minimum recording duration...")
duration = min_duration
print(f"Recording duration is {duration} seconds")
self.duration = self.audio_capture_params.sampling_freq * duration
self.block_count, remainder_samples = divmod(
self.duration, self.audio_capture_params.min_samples
)
if remainder_samples > 0.5 * self.audio_capture_params.sampling_freq:
self.block_count += 1
else:
self.duration = False # Record forever
def countdown(self, delay=3):
"""3 second countdown prior to recording audio."""
print("Beginning recording in...")
for i in range(delay, 0, -1):
print(f"{i}...")
time.sleep(1)
def update(self):
"""If a duration has been set, increments a counter to update the number of blocks of audio
data left to be collected. The stream is deactivated upon reaching the maximum block count
determined by the duration.
"""
if self.duration:
self.current_block += 1
if self.current_block == self.block_count:
self.is_active = False
def capture_data(self):
"""Gets the next window of audio data by retrieving the newest data from a queue and
shifting the position of the data in the collection. Overlap values of less than `min_samples` are supported.
"""
new_data = self.queue.get()
if self.is_first_window or self.audio_capture_params.overlap == 0:
self.collection[:self.audio_capture_params.min_samples] = new_data[:]
elif self.audio_capture_params.overlap < self.audio_capture_params.min_samples:
#
self.collection[0:self.audio_capture_params.overlap] = \
self.collection[(self.audio_capture_params.min_samples - self.audio_capture_params.overlap):
self.audio_capture_params.min_samples]
self.collection[self.audio_capture_params.overlap:(
self.audio_capture_params.overlap + self.audio_capture_params.min_samples)] = new_data[:]
else:
raise ValueError(
"Capture Error: Overlap must be less than {}".format(self.audio_capture_params.min_samples))
audio_data = self.collection[0:self.audio_capture_params.min_samples]
return np.asarray(audio_data).astype(self.audio_capture_params.dtype)
def callback(self, data, frames, time, status):
"""Places audio data from active stream into a queue for processing.
Update counter if recording duration is finite.
"""
if self.duration:
self.update()
if self.audio_capture_params.mono:
audio_data = data.copy().flatten()
else:
audio_data = data.copy()
self.queue.put(audio_data)
|