1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
# Copyright © 2020-2022 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
"""
This file contains helper functions for reading video/image data and
pre/postprocessing of video/image data using OpenCV.
"""
import os
import cv2
import numpy as np
def preprocess(frame: np.ndarray, input_data_type, input_data_shape: tuple, is_normalised: bool,
keep_aspect_ratio: bool=True):
"""
Takes a frame, resizes, swaps channels and converts data type to match
model input layer.
Args:
frame: Captured frame from video.
input_data_type: Contains data type of model input layer.
input_data_shape: Contains shape of model input layer.
is_normalised: if the input layer expects normalised data
keep_aspect_ratio: Network executor's input data aspect ratio
Returns:
Input tensor.
"""
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if keep_aspect_ratio:
# Swap channels and resize frame to model resolution
resized_frame = resize_with_aspect_ratio(frame, input_data_shape)
else:
# select the height and width from input_data_shape
frame_height = input_data_shape[1]
frame_width = input_data_shape[2]
resized_frame = cv2.resize(frame, (frame_width, frame_height))
# Expand dimensions and convert data type to match model input
if np.float32 == input_data_type:
data_type = np.float32
if is_normalised:
resized_frame = resized_frame.astype("float32")/255
else:
data_type = np.uint8
resized_frame = np.expand_dims(np.asarray(resized_frame, dtype=data_type), axis=0)
assert resized_frame.shape == input_data_shape
return resized_frame
def resize_with_aspect_ratio(frame: np.ndarray, input_data_shape: tuple):
"""
Resizes frame while maintaining aspect ratio, padding any empty space.
Args:
frame: Captured frame.
input_data_shape: Contains shape of model input layer.
Returns:
Frame resized to the size of model input layer.
"""
aspect_ratio = frame.shape[1] / frame.shape[0]
_, model_height, model_width, _ = input_data_shape
if aspect_ratio >= 1.0:
new_height, new_width = int(model_width / aspect_ratio), model_width
b_padding, r_padding = model_height - new_height, 0
else:
new_height, new_width = model_height, int(model_height * aspect_ratio)
b_padding, r_padding = 0, model_width - new_width
# Resize and pad any empty space
frame = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
frame = cv2.copyMakeBorder(frame, top=0, bottom=b_padding, left=0, right=r_padding,
borderType=cv2.BORDER_CONSTANT, value=[0, 0, 0])
return frame
def create_video_writer(video: cv2.VideoCapture, video_path: str, output_path: str):
"""
Creates a video writer object to write processed frames to file.
Args:
video: Video capture object, contains information about data source.
video_path: User-specified video file path.
output_path: Optional path to save the processed video.
Returns:
Video writer object.
"""
_, ext = os.path.splitext(video_path)
if output_path is not None:
assert os.path.isdir(output_path)
i, filename = 0, os.path.join(output_path if output_path is not None else str(), f'object_detection_demo{ext}')
while os.path.exists(filename):
i += 1
filename = os.path.join(output_path if output_path is not None else str(), f'object_detection_demo({i}){ext}')
video_writer = cv2.VideoWriter(filename=filename,
fourcc=get_source_encoding_int(video),
fps=int(video.get(cv2.CAP_PROP_FPS)),
frameSize=(int(video.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))))
return video_writer
def init_video_file_capture(video_path: str, output_path: str):
"""
Creates a video capture object from a video file.
Args:
video_path: User-specified video file path.
output_path: Optional path to save the processed video.
Returns:
Video capture object to capture frames, video writer object to write processed
frames to file, plus total frame count of video source to iterate through.
"""
if not os.path.exists(video_path):
raise FileNotFoundError(f'Video file not found for: {video_path}')
video = cv2.VideoCapture(video_path)
if not video.isOpened:
raise RuntimeError(f'Failed to open video capture from file: {video_path}')
video_writer = create_video_writer(video, video_path, output_path)
iter_frame_count = range(int(video.get(cv2.CAP_PROP_FRAME_COUNT)))
return video, video_writer, iter_frame_count
def init_video_stream_capture(video_source: int):
"""
Creates a video capture object from a device.
Args:
video_source: Device index used to read video stream.
Returns:
Video capture object used to capture frames from a video stream.
"""
video = cv2.VideoCapture(video_source)
if not video.isOpened:
raise RuntimeError(f'Failed to open video capture for device with index: {video_source}')
print('Processing video stream. Press \'Esc\' key to exit the demo.')
return video
def draw_bounding_boxes(frame: np.ndarray, detections: list, resize_factor, labels: dict):
"""
Draws bounding boxes around detected objects and adds a label and confidence score.
Args:
frame: The original captured frame from video source.
detections: A list of detected objects in the form [class, [box positions], confidence].
resize_factor: Resizing factor to scale box coordinates to output frame size.
labels: Dictionary of labels and colors keyed on the classification index.
"""
for detection in detections:
class_idx, box, confidence = [d for d in detection]
label, color = labels[class_idx][0].capitalize(), labels[class_idx][1]
# Obtain frame size and resized bounding box positions
frame_height, frame_width = frame.shape[:2]
x_min, y_min, x_max, y_max = [int(position * resize_factor) for position in box]
# Ensure box stays within the frame
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(frame_width, x_max), min(frame_height, y_max)
# Draw bounding box around detected object
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, 2)
# Create label for detected object class
label = f'{label} {confidence * 100:.1f}%'
label_color = (0, 0, 0) if sum(color) > 200 else (255, 255, 255)
# Make sure label always stays on-screen
x_text, y_text = cv2.getTextSize(label, cv2.FONT_HERSHEY_DUPLEX, 1, 1)[0][:2]
lbl_box_xy_min = (x_min, y_min if y_min<25 else y_min - y_text)
lbl_box_xy_max = (x_min + int(0.55 * x_text), y_min + y_text if y_min<25 else y_min)
lbl_text_pos = (x_min + 5, y_min + 16 if y_min < 25 else y_min - 5)
# Add label and confidence value
cv2.rectangle(frame, lbl_box_xy_min, lbl_box_xy_max, color, -1)
cv2.putText(frame, label, lbl_text_pos, cv2.FONT_HERSHEY_DUPLEX, 0.50,
label_color, 1, cv2.LINE_AA)
def get_source_encoding_int(video_capture):
return int(video_capture.get(cv2.CAP_PROP_FOURCC))
def crop_bounding_box_object(input_frame: np.ndarray, x_min: float, y_min: float, x_max: float, y_max: float):
"""
Creates a cropped image based on x and y coordinates.
Args:
input_frame: Image to crop
x_min, y_min, x_max, y_max: Coordinates of the bounding box
Returns:
Cropped image
"""
# Adding +1 to exclude the bounding box pixels.
cropped_image = input_frame[int(y_min) + 1:int(y_max), int(x_min) + 1:int(x_max)]
return cropped_image
|