1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
# Copyright © 2020 NXP and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
from urllib.parse import urlparse
from PIL import Image
from zipfile import ZipFile
import os
import pyarmnn as ann
import numpy as np
import requests
import argparse
import warnings
DEFAULT_IMAGE_URL = 'https://s3.amazonaws.com/model-server/inputs/kitten.jpg'
def run_inference(runtime, net_id, images, labels, input_binding_info, output_binding_info):
"""Runs inference on a set of images.
Args:
runtime: Arm NN runtime
net_id: Network ID
images: Loaded images to run inference on
labels: Loaded labels per class
input_binding_info: Network input information
output_binding_info: Network output information
Returns:
None
"""
output_tensors = ann.make_output_tensors([output_binding_info])
for idx, im in enumerate(images):
# Create input tensors
input_tensors = ann.make_input_tensors([input_binding_info], [im])
# Run inference
print("Running inference({0}) ...".format(idx))
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
# Process output
# output tensor has a shape (1, 1001)
out_tensor = ann.workload_tensors_to_ndarray(output_tensors)[0][0]
results = np.argsort(out_tensor)[::-1]
print_top_n(5, results, labels, out_tensor)
def unzip_file(filename: str):
"""Unzips a file.
Args:
filename(str): Name of the file
Returns:
None
"""
with ZipFile(filename, 'r') as zip_obj:
zip_obj.extractall()
def parse_command_line(desc: str = ""):
"""Adds arguments to the script.
Args:
desc (str): Script description
Returns:
Namespace: Arguments to the script command
"""
parser = argparse.ArgumentParser(description=desc)
parser.add_argument("-v", "--verbose", help="Increase output verbosity",
action="store_true")
parser.add_argument("-d", "--data-dir", help="Data directory which contains all the images.",
action="store", default="")
parser.add_argument("-m", "--model-dir",
help="Model directory which contains the model file (TFLite, ONNX).", action="store",
default="")
return parser.parse_args()
def __create_network(model_file: str, backends: list, parser=None):
"""Creates a network based on a file and parser type.
Args:
model_file (str): Path of the model file
backends (list): List of backends to use when running inference.
parser_type: Parser instance. (pyarmnn.ITFliteParser/pyarmnn.IOnnxParser...)
Returns:
int: Network ID
IParser: TF Lite parser instance
IRuntime: Runtime object instance
"""
args = parse_command_line()
options = ann.CreationOptions()
runtime = ann.IRuntime(options)
if parser is None:
# try to determine what parser to create based on model extension
_, ext = os.path.splitext(model_file)
if ext == ".onnx":
parser = ann.IOnnxParser()
elif ext == ".tflite":
parser = ann.ITfLiteParser()
assert (parser is not None)
network = parser.CreateNetworkFromBinaryFile(model_file)
preferred_backends = []
for b in backends:
preferred_backends.append(ann.BackendId(b))
opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(),
ann.OptimizerOptions())
if args.verbose:
for m in messages:
warnings.warn(m)
net_id, w = runtime.LoadNetwork(opt_network)
if args.verbose and w:
warnings.warn(w)
return net_id, parser, runtime
def create_tflite_network(model_file: str, backends: list = ('CpuAcc', 'CpuRef')):
"""Creates a network from a tflite model file.
Args:
model_file (str): Path of the model file.
backends (list): List of backends to use when running inference.
Returns:
int: Network ID.
int: Graph ID.
ITFliteParser: TF Lite parser instance.
IRuntime: Runtime object instance.
"""
net_id, parser, runtime = __create_network(model_file, backends, ann.ITfLiteParser())
graph_id = parser.GetSubgraphCount() - 1
return net_id, graph_id, parser, runtime
def create_onnx_network(model_file: str, backends: list = ('CpuAcc', 'CpuRef')):
"""Creates a network from an onnx model file.
Args:
model_file (str): Path of the model file.
backends (list): List of backends to use when running inference.
Returns:
int: Network ID.
IOnnxParser: ONNX parser instance.
IRuntime: Runtime object instance.
"""
return __create_network(model_file, backends, ann.IOnnxParser())
def preprocess_default(img: Image, width: int, height: int, data_type, scale: float, mean: list,
stddev: list):
"""Default preprocessing image function.
Args:
img (PIL.Image): PIL.Image object instance.
width (int): Width to resize to.
height (int): Height to resize to.
data_type: Data Type to cast the image to.
scale (float): Scaling value.
mean (list): RGB mean offset.
stddev (list): RGB standard deviation.
Returns:
np.array: Resized and preprocessed image.
"""
img = img.resize((width, height), Image.BILINEAR)
img = img.convert('RGB')
img = np.array(img)
img = np.reshape(img, (-1, 3)) # reshape to [RGB][RGB]...
img = ((img / scale) - mean) / stddev
img = img.flatten().astype(data_type)
return img
def load_images(image_files: list, input_width: int, input_height: int, data_type=np.uint8,
scale: float = 1., mean: list = (0., 0., 0.), stddev: list = (1., 1., 1.),
preprocess_fn=preprocess_default):
"""Loads images, resizes and performs any additional preprocessing to run inference.
Args:
img (list): List of PIL.Image object instances.
input_width (int): Width to resize to.
input_height (int): Height to resize to.
data_type: Data Type to cast the image to.
scale (float): Scaling value.
mean (list): RGB mean offset.
stddev (list): RGB standard deviation.
preprocess_fn: Preprocessing function.
Returns:
np.array: Resized and preprocessed images.
"""
images = []
for i in image_files:
img = Image.open(i)
img = preprocess_fn(img, input_width, input_height, data_type, scale, mean, stddev)
images.append(img)
return images
def load_labels(label_file: str):
"""Loads a labels file containing a label per line.
Args:
label_file (str): Labels file path.
Returns:
list: List of labels read from a file.
"""
with open(label_file, 'r') as f:
labels = [l.rstrip() for l in f]
return labels
def print_top_n(N: int, results: list, labels: list, prob: list):
"""Prints TOP-N results
Args:
N (int): Result count to print.
results (list): Top prediction indices.
labels (list): A list of labels for every class.
prob (list): A list of probabilities for every class.
Returns:
None
"""
assert (len(results) >= 1 and len(results) == len(labels) == len(prob))
for i in range(min(len(results), N)):
print("class={0} ; value={1}".format(labels[results[i]], prob[results[i]]))
def download_file(url: str, force: bool = False, filename: str = None):
"""Downloads a file.
Args:
url (str): File url.
force (bool): Forces to download the file even if it exists.
filename (str): Renames the file when set.
Raises:
RuntimeError: If for some reason download fails.
Returns:
str: Path to the downloaded file.
"""
try:
if filename is None: # extract filename from url when None
filename = urlparse(url)
filename = os.path.basename(filename.path)
print("Downloading '{0}' from '{1}' ...".format(filename, url))
if not os.path.exists(filename) or force is True:
r = requests.get(url)
with open(filename, 'wb') as f:
f.write(r.content)
print("Finished.")
else:
print("File already exists.")
except:
raise RuntimeError("Unable to download file.")
return filename
def get_model_and_labels(model_dir: str, model: str, labels: str, archive: str = None, download_url: str = None):
"""Gets model and labels.
Args:
model_dir(str): Folder in which model and label files can be found
model (str): Name of the model file
labels (str): Name of the labels file
archive (str): Name of the archive file (optional - need to provide only labels and model)
download_url(str or list): Archive url or urls if multiple files (optional - to to provide only to download it)
Returns:
tuple (str, str): Output label and model filenames
"""
labels = os.path.join(model_dir, labels)
model = os.path.join(model_dir, model)
if os.path.exists(labels) and os.path.exists(model):
print("Found model ({0}) and labels ({1}).".format(model, labels))
elif archive is not None and os.path.exists(os.path.join(model_dir, archive)):
print("Found archive ({0}). Unzipping ...".format(archive))
unzip_file(archive)
elif download_url is not None:
print("Model, labels or archive not found. Downloading ...".format(archive))
try:
if isinstance(download_url, str):
download_url = [download_url]
for dl in download_url:
archive = download_file(dl)
if dl.lower().endswith(".zip"):
unzip_file(archive)
except RuntimeError:
print("Unable to download file ({}).".format(download_url))
if not os.path.exists(labels) or not os.path.exists(model):
raise RuntimeError("Unable to provide model and labels.")
return model, labels
def list_images(folder: str = None, formats: list = ('.jpg', '.jpeg')):
"""Lists files of a certain format in a folder.
Args:
folder (str): Path to the folder to search
formats (list): List of supported files
Returns:
list: A list of found files
"""
files = []
if folder and not os.path.exists(folder):
print("Folder '{}' does not exist.".format(folder))
return files
for file in os.listdir(folder if folder else os.getcwd()):
for frmt in formats:
if file.lower().endswith(frmt):
files.append(os.path.join(folder, file) if folder else file)
break # only the format loop
return files
def get_images(image_dir: str, image_url: str = DEFAULT_IMAGE_URL):
"""Gets image.
Args:
image_dir (str): Image filename
image_url (str): Image url
Returns:
str: Output image filename
"""
images = list_images(image_dir)
if not images and image_url is not None:
print("No images found. Downloading ...")
try:
images = [download_file(image_url)]
except RuntimeError:
print("Unable to download file ({0}).".format(image_url))
if not images:
raise RuntimeError("Unable to provide images.")
return images
|