1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
# Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
import os
import numpy as np
import pytest
import collections
from context import mfcc
from context import wav2letter_mfcc
from context import audio_capture
# Elements relevant to MFCC filter bank & feature extraction
MFCC_TEST_PARAMS = collections.namedtuple('mfcc_test_params',
['algo_params', 'mfcc_constructor', 'audio_proc_constructor'])
def kws_test_params():
kws_algo_params = mfcc.MFCCParams(sampling_freq=16000, num_fbank_bins=40, mel_lo_freq=20, mel_hi_freq=4000,
num_mfcc_feats=10, frame_len=640, use_htk_method=True, n_fft=1024)
return MFCC_TEST_PARAMS(kws_algo_params, mfcc.MFCC, mfcc.AudioPreprocessor)
def asr_test_params():
asr_algo_params = mfcc.MFCCParams(sampling_freq=16000, num_fbank_bins=128, mel_lo_freq=0, mel_hi_freq=8000,
num_mfcc_feats=13, frame_len=512, use_htk_method=False, n_fft=512)
return MFCC_TEST_PARAMS(asr_algo_params, wav2letter_mfcc.Wav2LetterMFCC, wav2letter_mfcc.W2LAudioPreprocessor)
def kws_cap_params():
return audio_capture.AudioCaptureParams(dtype=np.float32, overlap=0, min_samples=16000, sampling_freq=16000,
mono=True)
def asr_cap_params():
return audio_capture.AudioCaptureParams(dtype=np.float32, overlap=31712, min_samples=47712,
sampling_freq=16000, mono=True)
@pytest.fixture()
def audio_data(test_data_folder, file, audio_cap_params):
audio_file = os.path.join(test_data_folder, file)
capture = audio_capture.capture_audio(audio_file, audio_cap_params)
yield next(capture)
@pytest.mark.parametrize("file", ["yes.wav", "myVoiceIsMyPassportVerifyMe04.wav"])
@pytest.mark.parametrize("audio_cap_params", [kws_cap_params(), asr_cap_params()])
def test_audio_file(audio_data, test_data_folder, file, audio_cap_params):
assert audio_data.shape == (audio_cap_params.min_samples,)
assert audio_data.dtype == audio_cap_params.dtype
@pytest.mark.parametrize("mfcc_test_params, test_out", [(kws_test_params(), 25.470010570730597),
(asr_test_params(), 0.24)])
def test_mel_scale_function(mfcc_test_params, test_out):
mfcc_inst = mfcc_test_params.mfcc_constructor(mfcc_test_params.algo_params)
mel = mfcc_inst.mel_scale(16, mfcc_test_params.algo_params.use_htk_method)
assert np.isclose(mel, test_out)
@pytest.mark.parametrize("mfcc_test_params, test_out", [(kws_test_params(), 10.008767240008943),
(asr_test_params(), 1071.170287494467)])
def test_inverse_mel_scale_function(mfcc_test_params, test_out):
mfcc_inst = mfcc_test_params.mfcc_constructor(mfcc_test_params.algo_params)
mel = mfcc_inst.inv_mel_scale(16, mfcc_test_params.algo_params.use_htk_method)
assert np.isclose(mel, test_out)
mel_filter_test_data_kws = {0: [0.33883214, 0.80088392, 0.74663128, 0.30332531],
1: [0.25336872, 0.69667469, 0.86883317, 0.44281119, 0.02493546],
2: [0.13116683, 0.55718881, 0.97506454, 0.61490026, 0.21241678],
5: [0.32725038, 0.69579596, 0.9417706, 0.58524989, 0.23445207],
-1: [0.02433275, 0.10371618, 0.1828123, 0.26162319, 0.34015089, 0.41839743,
0.49636481, 0.57405503, 0.65147004, 0.72861179, 0.8054822, 0.88208318,
0.95841659, 0.96551568, 0.88971181, 0.81416996, 0.73888833, 0.66386514,
0.58909861, 0.514587, 0.44032856, 0.3663216, 0.29256441, 0.21905531,
0.14579264, 0.07277474]}
mel_filter_test_data_asr = {0: [0.02837754],
1: [0.01438901, 0.01398853],
2: [0.02877802],
5: [0.01478948, 0.01358806],
-1: [4.82151203e-05, 9.48791110e-04, 1.84569875e-03, 2.73896782e-03,
3.62862771e-03, 4.51470746e-03, 5.22215439e-03, 4.34314914e-03,
3.46763895e-03, 2.59559614e-03, 1.72699334e-03, 8.61803536e-04]}
@pytest.mark.parametrize("mfcc_test_params, test_out",
[(kws_test_params(), mel_filter_test_data_kws),
(asr_test_params(), mel_filter_test_data_asr)])
def test_create_mel_filter_bank(mfcc_test_params, test_out):
mfcc_inst = mfcc_test_params.mfcc_constructor(mfcc_test_params.algo_params)
mel_filter_bank = mfcc_inst.create_mel_filter_bank()
assert len(mel_filter_bank) == mfcc_test_params.algo_params.num_fbank_bins
for indx, data in test_out.items():
assert np.allclose(mel_filter_bank[indx], data)
mfcc_test_data_kws = (-22.671347398982626, -0.6161543999707211, 2.072326974167832,
0.5813741475362223, 1.0165529747334272, 0.8581560719988703,
0.4603911069624896, 0.03392820944377398, 1.1651093266902361,
0.007200025869960908)
mfcc_test_data_asr = (-735.46345398, 69.50331943, 16.39159347, 22.74874819, 24.84782893,
10.67559303, 12.82828618, -3.51084271, 4.66633677, 10.20079095, 11.34782948, 3.90499354,
9.32322384)
@pytest.mark.parametrize("mfcc_test_params, test_out, file, audio_cap_params",
[(kws_test_params(), mfcc_test_data_kws, "yes.wav", kws_cap_params()),
(asr_test_params(), mfcc_test_data_asr, "myVoiceIsMyPassportVerifyMe04.wav",
asr_cap_params())])
def test_mfcc_compute_first_frame(audio_data, mfcc_test_params, test_out, file, audio_cap_params):
audio_data = np.array(audio_data)[0:mfcc_test_params.algo_params.frame_len]
mfcc_inst = mfcc_test_params.mfcc_constructor(mfcc_test_params.algo_params)
mfcc_feats = mfcc_inst.mfcc_compute(audio_data)
assert np.allclose((mfcc_feats[0:mfcc_test_params.algo_params.num_mfcc_feats]), test_out)
extract_test_data_kws = {0: [-2.2671347e+01, -6.1615437e-01, 2.0723269e+00, 5.8137417e-01,
1.0165529e+00, 8.5815609e-01, 4.6039110e-01, 3.3928208e-02,
1.1651093e+00, 7.2000260e-03],
1: [-23.488806, -1.1687667, 3.0548365, 1.5129884, 1.4142203,
0.6869772, 1.1875846, 0.5743369, 1.202258, -0.12133602],
2: [-23.909292, -1.5186096, 1.8721082, 0.7378916, 0.44974303,
0.17609395, 0.5183161, 0.37109664, 0.14186797, 0.58400506],
-1: [-23.752186, -0.1796912, 1.9514247, 0.32554424, 1.8425112,
0.8763608, 0.78326845, 0.27808753, 0.73788685, 0.30338883]}
extract_test_data_asr = {0: [-4.98830318e+00, 6.86444461e-01, 3.12024504e-01, 3.56840312e-01,
3.71638149e-01, 2.71728605e-01, 2.86904365e-01, 1.71718955e-01,
2.29365349e-01, 2.68381387e-01, 2.76467651e-01, 2.23998129e-01,
2.62194842e-01, -1.48247385e+01, 1.21875501e+00, 4.20235842e-01,
5.39400637e-01, 6.09882712e-01, 1.68513224e-01, 3.75330061e-01,
8.57576132e-02, 1.92831963e-01, 1.41814977e-01, 1.57615796e-01,
7.19076321e-02, 1.98729336e-01, 3.92199278e+00, -5.76856315e-01,
1.17938723e-02, -9.25096497e-02, -3.59488949e-02, 1.13284402e-03,
1.51282102e-01, 1.13404110e-01, -8.69824737e-02, -1.48449212e-01,
-1.24230251e-01, -1.90728232e-01, -5.37525006e-02],
1: [-4.96694946e+00, 6.69411421e-01, 2.86189795e-01, 3.65071595e-01,
3.92671198e-01, 2.44258150e-01, 2.52177566e-01, 2.16024980e-01,
2.79812217e-01, 2.79687315e-01, 2.95228422e-01, 2.83991724e-01,
2.46358261e-01, -1.33618221e+01, 1.08920455e+00, 3.88707787e-01,
5.05674303e-01, 6.08285785e-01, 1.68113053e-01, 3.54529470e-01,
6.68609440e-02, 1.52882755e-01, 6.89579248e-02, 1.18375972e-01,
5.86742274e-02, 1.15678251e-01, 1.07892036e+01, -1.07193100e+00,
-2.18140319e-01, -3.35950345e-01, -2.57241666e-01, -5.54431602e-02,
-8.38544443e-02, -5.79114584e-03, -2.23973781e-01, -2.91451365e-01,
-2.11069033e-01, -1.90297231e-01, -2.76504964e-01],
2: [-4.98664522e+00, 6.54802263e-01, 3.70355755e-01, 4.06837821e-01,
4.05175537e-01, 2.29149669e-01, 2.83312678e-01, 2.17573136e-01,
3.07824671e-01, 2.48388007e-01, 2.25399241e-01, 2.52003014e-01,
2.83968121e-01, -1.05043650e+01, 7.91533887e-01, 3.11546475e-01,
4.36079264e-01, 5.93271911e-01, 2.02480286e-01, 3.24254721e-01,
6.29674867e-02, 9.67641100e-02, -1.62826646e-02, 5.47595806e-02,
2.90475693e-02, 2.62522381e-02, 1.38787737e+01, -1.32597208e+00,
-3.73900205e-01, -4.38065380e-01, -3.05983245e-01, 1.14390980e-02,
-2.10821658e-01, -6.22789040e-02, -2.88273603e-01, -3.29794526e-01,
-2.43764088e-01, -1.70954674e-01, -3.65193188e-01],
-1: [-2.1894817, 1.583355, -0.45024827, 0.11657667, 0.08940444, 0.09041209,
0.2003613, 0.11800499, 0.18838657, 0.29271516, 0.22758003, 0.10634928,
-0.04019014, 7.203311, -2.414309, 0.28750962, -0.24222863, 0.04680864,
-0.12129474, 0.18059334, 0.06250379, 0.11363743, -0.2561094, -0.08132717,
-0.08500769, 0.18916495, 1.3529671, -3.7919693, 1.937804, 0.6845761,
0.15381853, 0.41106734, -0.28207013, 0.2195526, 0.06716935, -0.02886542,
-0.22860551, 0.24788341, 0.63940096]}
@pytest.mark.parametrize("mfcc_test_params, model_input_size, stride, min_samples, file, audio_cap_params, test_out",
[(kws_test_params(), 49, 320, 16000, "yes.wav", kws_cap_params(),
extract_test_data_kws),
(asr_test_params(), 296, 160, 47712, "myVoiceIsMyPassportVerifyMe04.wav", asr_cap_params(),
extract_test_data_asr)])
def test_feat_extraction_full_sized_input(audio_data,
mfcc_test_params,
model_input_size,
stride,
min_samples, file, audio_cap_params,
test_out):
"""
Test out values were gathered by printing the mfcc features collected during the first full inference
on the test wav files. Note the extract_features() function simply calls the mfcc_compute() from previous
test but feeds in enough samples for an inference rather than a single frame. It also computes the 1st & 2nd
derivative features hence the shape (13*3 = 39).
Specific model_input_size and stride parameters are also required as additional arguments.
"""
audio_data = np.array(audio_data)
# Pad with zeros to ensure min_samples for inference
audio_data.resize(min_samples)
mfcc_inst = mfcc_test_params.mfcc_constructor(mfcc_test_params.algo_params)
preprocessor = mfcc_test_params.audio_proc_constructor(mfcc_inst, model_input_size, stride)
# extract_features passes the audio data to mfcc_compute frame by frame and concatenates results
input_tensor = preprocessor.extract_features(audio_data)
assert len(input_tensor) == model_input_size
for indx, data in test_out.items():
assert np.allclose(input_tensor[indx], data)
# Expected contents of input tensors for inference on a silent wav file
extract_features_zeros_kws = {0: [-2.05949466e+02, -4.88498131e-15, 8.15428020e-15, -5.77315973e-15,
7.03142511e-15, -1.11022302e-14, 2.18015108e-14, -1.77635684e-15,
1.06581410e-14, 2.75335310e-14],
-1: [-2.05949466e+02, -4.88498131e-15, 8.15428020e-15, -5.77315973e-15,
7.03142511e-15, -1.11022302e-14, 2.18015108e-14, -1.77635684e-15,
1.06581410e-14, 2.75335310e-14]}
extract_features_zeros_asr = {
0: [-3.46410162e+00, 2.88675135e-01, 2.88675135e-01, 2.88675135e-01,
2.88675135e-01, 2.88675135e-01, 2.88675135e-01, 2.88675135e-01,
2.88675135e-01, 2.88675135e-01, 2.88675135e-01, 2.88675135e-01,
2.88675135e-01, 2.79662980e+01, 1.75638694e-15, -9.41313626e-16,
9.66012817e-16, -1.23221521e-15, 1.75638694e-15, -1.59035349e-15,
2.41503204e-15, -1.64798493e-15, 4.39096735e-16, -4.95356004e-16,
-2.19548368e-16, -3.55668355e-15, 8.19843971e+00, -4.28340672e-02,
-4.28340672e-02, -4.28340672e-02, -4.28340672e-02, -4.28340672e-02,
-4.28340672e-02, -4.28340672e-02, -4.28340672e-02, -4.28340672e-02,
-4.28340672e-02, -4.28340672e-02, -4.28340672e-02],
- 1: [-3.46410162e+00, 2.88675135e-01, 2.88675135e-01, 2.88675135e-01,
2.88675135e-01, 2.88675135e-01, 2.88675135e-01, 2.88675135e-01,
2.88675135e-01, 2.88675135e-01, 2.88675135e-01, 2.88675135e-01,
2.88675135e-01, 2.79662980e+01, 1.75638694e-15, -9.41313626e-16,
9.66012817e-16, -1.23221521e-15, 1.75638694e-15, -1.59035349e-15,
2.41503204e-15, -1.64798493e-15, 4.39096735e-16, -4.95356004e-16,
-2.19548368e-16, -3.55668355e-15, 8.19843971e+00, -4.28340672e-02,
-4.28340672e-02, -4.28340672e-02, -4.28340672e-02, -4.28340672e-02,
-4.28340672e-02, -4.28340672e-02, -4.28340672e-02, -4.28340672e-02,
-4.28340672e-02, -4.28340672e-02, -4.28340672e-02]}
@pytest.mark.parametrize("mfcc_test_params,model_input_size, stride, min_samples, test_out",
[(kws_test_params(), 49, 320, 16000, extract_features_zeros_kws),
(asr_test_params(), 296, 160, 47712, extract_features_zeros_asr)])
def test_feat_extraction_full_sized_input_zeros(mfcc_test_params, model_input_size, stride, min_samples, test_out):
audio_data = np.zeros(min_samples).astype(np.float32)
mfcc_inst = mfcc_test_params.mfcc_constructor(mfcc_test_params.algo_params)
preprocessor = mfcc_test_params.audio_proc_constructor(mfcc_inst, model_input_size,
stride)
input_tensor = preprocessor.extract_features(audio_data)
assert len(input_tensor) == model_input_size
for indx, data in test_out.items():
# Element 14 of feature extraction vector differs minutely during
# inference on a silent wav file compared to array of 0's
# Workarounds were to skip this sample or add large tolerance argument (atol=10)
assert np.allclose(input_tensor[indx][0:13], data[0:13])
assert np.allclose(input_tensor[indx][15:], data[15:])
|