1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
# Copyright © 2020 Arm Ltd. All rights reserved.
# SPDX-License-Identifier: MIT
import os
import pytest
import warnings
import numpy as np
import pyarmnn as ann
@pytest.fixture(scope="function")
def random_runtime(shared_data_folder):
parser = ann.ITfLiteParser()
network = parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, 'mock_model.tflite'))
preferred_backends = [ann.BackendId('CpuRef')]
options = ann.CreationOptions()
runtime = ann.IRuntime(options)
graphs_count = parser.GetSubgraphCount()
graph_id = graphs_count - 1
input_names = parser.GetSubgraphInputTensorNames(graph_id)
input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, input_names[0])
input_tensor_id = input_binding_info[0]
input_tensor_info = input_binding_info[1]
input_tensor_info.SetConstant()
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
input_data = np.random.randint(255, size=input_tensor_info.GetNumElements(), dtype=np.uint8)
const_tensor_pair = (input_tensor_id, ann.ConstTensor(input_tensor_info, input_data))
input_tensors = [const_tensor_pair]
output_tensors = []
for index, output_name in enumerate(output_names):
out_bind_info = parser.GetNetworkOutputBindingInfo(graph_id, output_name)
out_tensor_info = out_bind_info[1]
out_tensor_id = out_bind_info[0]
output_tensors.append((out_tensor_id,
ann.Tensor(out_tensor_info)))
yield preferred_backends, network, runtime, input_tensors, output_tensors
@pytest.fixture(scope='function')
def mock_model_runtime(shared_data_folder):
parser = ann.ITfLiteParser()
network = parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, 'mock_model.tflite'))
graph_id = 0
input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, "input_1")
input_tensor_data = np.load(os.path.join(shared_data_folder, 'tflite_parser/input_lite.npy'))
preferred_backends = [ann.BackendId('CpuRef')]
options = ann.CreationOptions()
runtime = ann.IRuntime(options)
opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions())
print(messages)
net_id, messages = runtime.LoadNetwork(opt_network)
print(messages)
input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor_data])
output_names = parser.GetSubgraphOutputTensorNames(graph_id)
outputs_binding_info = []
for output_name in output_names:
outputs_binding_info.append(parser.GetNetworkOutputBindingInfo(graph_id, output_name))
output_tensors = ann.make_output_tensors(outputs_binding_info)
yield runtime, net_id, input_tensors, output_tensors
def test_python_disowns_network(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
runtime.LoadNetwork(opt_network)
assert not opt_network.thisown
def test_load_network(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
net_id, messages = runtime.LoadNetwork(opt_network)
assert "" == messages
assert net_id == 0
def test_create_runtime_with_external_profiling_enabled():
options = ann.CreationOptions()
options.m_ProfilingOptions.m_FileOnly = True
options.m_ProfilingOptions.m_EnableProfiling = True
options.m_ProfilingOptions.m_OutgoingCaptureFile = "/tmp/outgoing.txt"
options.m_ProfilingOptions.m_IncomingCaptureFile = "/tmp/incoming.txt"
options.m_ProfilingOptions.m_TimelineEnabled = True
options.m_ProfilingOptions.m_CapturePeriod = 1000
options.m_ProfilingOptions.m_FileFormat = "JSON"
runtime = ann.IRuntime(options)
assert runtime is not None
def test_create_runtime_with_external_profiling_enabled_invalid_options():
options = ann.CreationOptions()
options.m_ProfilingOptions.m_FileOnly = True
options.m_ProfilingOptions.m_EnableProfiling = False
options.m_ProfilingOptions.m_OutgoingCaptureFile = "/tmp/outgoing.txt"
options.m_ProfilingOptions.m_IncomingCaptureFile = "/tmp/incoming.txt"
options.m_ProfilingOptions.m_TimelineEnabled = True
options.m_ProfilingOptions.m_CapturePeriod = 1000
options.m_ProfilingOptions.m_FileFormat = "JSON"
with pytest.raises(RuntimeError) as err:
runtime = ann.IRuntime(options)
expected_error_message = "It is not possible to enable timeline reporting without profiling being enabled"
assert expected_error_message in str(err.value)
def test_load_network_properties_provided(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
inputSource = ann.MemorySource_Undefined
outputSource = ann.MemorySource_Undefined
properties = ann.INetworkProperties(False, inputSource, outputSource)
net_id, messages = runtime.LoadNetwork(opt_network, properties)
assert "" == messages
assert net_id == 0
def test_network_properties_constructor(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
inputSource = ann.MemorySource_Undefined
outputSource = ann.MemorySource_Undefined
properties = ann.INetworkProperties(True, inputSource, outputSource)
assert properties.m_AsyncEnabled == True
assert properties.m_ProfilingEnabled == False
assert properties.m_OutputNetworkDetailsMethod == ann.ProfilingDetailsMethod_Undefined
assert properties.m_InputSource == ann.MemorySource_Undefined
assert properties.m_OutputSource == ann.MemorySource_Undefined
net_id, messages = runtime.LoadNetwork(opt_network, properties)
assert "" == messages
assert net_id == 0
def test_unload_network_fails_for_invalid_net_id(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions())
with pytest.raises(RuntimeError) as err:
runtime.UnloadNetwork(9)
expected_error_message = "Failed to unload network."
assert expected_error_message in str(err.value)
def test_enqueue_workload(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
input_tensors = random_runtime[3]
output_tensors = random_runtime[4]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
net_id, _ = runtime.LoadNetwork(opt_network)
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
def test_enqueue_workload_fails_with_empty_input_tensors(random_runtime):
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
input_tensors = []
output_tensors = random_runtime[4]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
net_id, _ = runtime.LoadNetwork(opt_network)
with pytest.raises(RuntimeError) as err:
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
expected_error_message = "Number of inputs provided does not match network."
assert expected_error_message in str(err.value)
@pytest.mark.x86_64
@pytest.mark.parametrize('count', [5])
def test_multiple_inference_runs_yield_same_result(count, mock_model_runtime):
"""
Test that results remain consistent among multiple runs of the same inference.
"""
runtime = mock_model_runtime[0]
net_id = mock_model_runtime[1]
input_tensors = mock_model_runtime[2]
output_tensors = mock_model_runtime[3]
expected_results = np.array([[4, 85, 108, 29, 8, 16, 0, 2, 5, 0]])
for _ in range(count):
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
output_vectors = ann.workload_tensors_to_ndarray(output_tensors)
for i in range(len(expected_results)):
assert output_vectors[i].all() == expected_results[i].all()
@pytest.mark.aarch64
def test_aarch64_inference_results(mock_model_runtime):
runtime = mock_model_runtime[0]
net_id = mock_model_runtime[1]
input_tensors = mock_model_runtime[2]
output_tensors = mock_model_runtime[3]
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
output_vectors = ann.workload_tensors_to_ndarray(output_tensors)
expected_outputs = expected_results = np.array([[4, 85, 108, 29, 8, 16, 0, 2, 5, 0]])
for i in range(len(expected_outputs)):
assert output_vectors[i].all() == expected_results[i].all()
def test_enqueue_workload_with_profiler(random_runtime):
"""
Tests ArmNN's profiling extension
"""
preferred_backends = random_runtime[0]
network = random_runtime[1]
runtime = random_runtime[2]
input_tensors = random_runtime[3]
output_tensors = random_runtime[4]
opt_network, _ = ann.Optimize(network, preferred_backends,
runtime.GetDeviceSpec(), ann.OptimizerOptions())
net_id, _ = runtime.LoadNetwork(opt_network)
profiler = runtime.GetProfiler(net_id)
# By default profiling should be turned off:
assert profiler.IsProfilingEnabled() is False
# Enable profiling:
profiler.EnableProfiling(True)
assert profiler.IsProfilingEnabled() is True
# Run the inference:
runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
# Get profile output as a string:
str_profile = profiler.as_json()
# Verify that certain markers are present:
assert len(str_profile) != 0
assert str_profile.find('\"ArmNN\": {') > 0
# Get events analysis output as a string:
str_events_analysis = profiler.event_log()
assert "Event Sequence - Name | Duration (ms) | Start (ms) | Stop (ms) | Device" in str_events_analysis
assert profiler.thisown == 0
def test_check_runtime_swig_ownership(random_runtime):
# Check to see that SWIG has ownership for runtime. This instructs SWIG to take
# ownership of the return value. This allows the value to be automatically
# garbage-collected when it is no longer in use
runtime = random_runtime[2]
assert runtime.thisown
|