1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
# Copyright © 2020 Arm Ltd. All rights reserved.
# SPDX-License-Identifier: MIT
from copy import copy
import pytest
import numpy as np
import pyarmnn as ann
def __get_tensor_info(dt):
tensor_info = ann.TensorInfo(ann.TensorShape((2, 3)), dt)
return tensor_info
@pytest.mark.parametrize("dt", [ann.DataType_Float32, ann.DataType_Float16,
ann.DataType_QAsymmU8, ann.DataType_QSymmS8,
ann.DataType_QAsymmS8])
def test_create_tensor_with_info(dt):
tensor_info = __get_tensor_info(dt)
elements = tensor_info.GetNumElements()
num_bytes = tensor_info.GetNumBytes()
d_type = dt
tensor = ann.Tensor(tensor_info)
assert tensor_info != tensor.GetInfo(), "Different objects"
assert elements == tensor.GetNumElements()
assert num_bytes == tensor.GetNumBytes()
assert d_type == tensor.GetDataType()
def test_create_tensor_undefined_datatype():
tensor_info = ann.TensorInfo()
tensor_info.SetDataType(99)
with pytest.raises(ValueError) as err:
ann.Tensor(tensor_info)
assert 'The data type provided for this Tensor is not supported.' in str(err.value)
@pytest.mark.parametrize("dt", [ann.DataType_Float32])
def test_tensor_memory_output(dt):
tensor_info = __get_tensor_info(dt)
tensor = ann.Tensor(tensor_info)
# empty memory area because inference has not yet been run.
assert tensor.get_memory_area().tolist() # has random stuff
assert 4 == tensor.get_memory_area().itemsize, "it is float32"
@pytest.mark.parametrize("dt", [ann.DataType_Float32, ann.DataType_Float16,
ann.DataType_QAsymmU8, ann.DataType_QSymmS8,
ann.DataType_QAsymmS8])
def test_tensor__str__(dt):
tensor_info = __get_tensor_info(dt)
elements = tensor_info.GetNumElements()
num_bytes = tensor_info.GetNumBytes()
d_type = dt
dimensions = tensor_info.GetNumDimensions()
tensor = ann.Tensor(tensor_info)
assert str(tensor) == "Tensor{{DataType: {}, NumBytes: {}, NumDimensions: " \
"{}, NumElements: {}}}".format(d_type, num_bytes, dimensions, elements)
def test_create_empty_tensor():
tensor = ann.Tensor()
assert 0 == tensor.GetNumElements()
assert 0 == tensor.GetNumBytes()
assert tensor.get_memory_area() is None
@pytest.mark.parametrize("dt", [ann.DataType_Float32, ann.DataType_Float16,
ann.DataType_QAsymmU8, ann.DataType_QSymmS8,
ann.DataType_QAsymmS8])
def test_create_tensor_from_tensor(dt):
tensor_info = __get_tensor_info(dt)
tensor = ann.Tensor(tensor_info)
copied_tensor = ann.Tensor(tensor)
assert copied_tensor != tensor, "Different objects"
assert copied_tensor.GetInfo() != tensor.GetInfo(), "Different objects"
assert copied_tensor.get_memory_area().ctypes.data == tensor.get_memory_area().ctypes.data, "Same memory area"
assert copied_tensor.GetNumElements() == tensor.GetNumElements()
assert copied_tensor.GetNumBytes() == tensor.GetNumBytes()
assert copied_tensor.GetDataType() == tensor.GetDataType()
@pytest.mark.parametrize("dt", [ann.DataType_Float32, ann.DataType_Float16,
ann.DataType_QAsymmU8, ann.DataType_QSymmS8,
ann.DataType_QAsymmS8])
def test_copy_tensor(dt):
tensor = ann.Tensor(__get_tensor_info(dt))
copied_tensor = copy(tensor)
assert copied_tensor != tensor, "Different objects"
assert copied_tensor.GetInfo() != tensor.GetInfo(), "Different objects"
assert copied_tensor.get_memory_area().ctypes.data == tensor.get_memory_area().ctypes.data, "Same memory area"
assert copied_tensor.GetNumElements() == tensor.GetNumElements()
assert copied_tensor.GetNumBytes() == tensor.GetNumBytes()
assert copied_tensor.GetDataType() == tensor.GetDataType()
@pytest.mark.parametrize("dt", [ann.DataType_Float32, ann.DataType_Float16,
ann.DataType_QAsymmU8, ann.DataType_QSymmS8,
ann.DataType_QAsymmS8])
def test_copied_tensor_has_memory_area_access_after_deletion_of_original_tensor(dt):
tensor = ann.Tensor(__get_tensor_info(dt))
tensor.get_memory_area()[0] = 100
initial_mem_copy = np.array(tensor.get_memory_area())
assert 100 == initial_mem_copy[0]
copied_tensor = ann.Tensor(tensor)
del tensor
np.testing.assert_array_equal(copied_tensor.get_memory_area(), initial_mem_copy)
assert 100 == copied_tensor.get_memory_area()[0]
def test_create_const_tensor_incorrect_args():
with pytest.raises(ValueError) as err:
ann.Tensor('something', 'something')
expected_error_message = "Incorrect number of arguments or type of arguments provided to create Tensor."
assert expected_error_message in str(err.value)
@pytest.mark.parametrize("dt", [ann.DataType_Float16])
def test_tensor_memory_output_fp16(dt):
# Check Tensor with float16
tensor_info = __get_tensor_info(dt)
tensor = ann.Tensor(tensor_info)
assert tensor.GetNumElements() == 6
assert tensor.GetNumBytes() == 12
assert tensor.GetDataType() == ann.DataType_Float16
|