1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
#
# Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
# SPDX-License-Identifier: MIT
#
import argparse
from pathlib import Path
from typing import Union
import tflite_runtime.interpreter as tflite
from PIL import Image
import numpy as np
def check_args(args: argparse.Namespace):
"""Check the values used in the command-line have acceptable values
args:
- args: argparse.Namespace
returns:
- None
raises:
- FileNotFoundError: if passed files do not exist.
- IOError: if files are of incorrect format.
"""
input_image_p = args.input_image
if not input_image_p.suffix in (".png", ".jpg", ".jpeg"):
raise IOError(
"--input_image option should point to an image file of the "
"format .jpg, .jpeg, .png"
)
if not input_image_p.exists():
raise FileNotFoundError("Cannot find ", input_image_p.name)
model_p = args.model_file
if not model_p.suffix == ".tflite":
raise IOError("--model_file should point to a tflite file.")
if not model_p.exists():
raise FileNotFoundError("Cannot find ", model_p.name)
label_mapping_p = args.label_file
if not label_mapping_p.suffix == ".txt":
raise IOError("--label_file expects a .txt file.")
if not label_mapping_p.exists():
raise FileNotFoundError("Cannot find ", label_mapping_p.name)
# check all args given in preferred backends make sense
supported_backends = ["GpuAcc", "CpuAcc", "CpuRef"]
if not all([backend in supported_backends for backend in args.preferred_backends]):
raise ValueError("Incorrect backends given. Please choose from "\
"'GpuAcc', 'CpuAcc', 'CpuRef'.")
return None
def load_image(image_path: Path, model_input_dims: Union[tuple, list], grayscale: bool):
"""load an image and put into correct format for the tensorflow lite model
args:
- image_path: pathlib.Path
- model_input_dims: tuple (or array-like). (height,width)
returns:
- image: np.array
"""
height, width = model_input_dims
# load and resize image
image = Image.open(image_path).resize((width, height))
# convert to greyscale if expected
if grayscale:
image = image.convert("LA")
image = np.expand_dims(image, axis=0)
return image
def load_delegate(delegate_path: Path, backends: list):
"""load the armnn delegate.
args:
- delegate_path: pathlib.Path -> location of you libarmnnDelegate.so
- backends: list -> list of backends you want to use in string format
returns:
- armnn_delegate: tflite.delegate
"""
# create a command separated string
backend_string = ",".join(backends)
# load delegate
armnn_delegate = tflite.load_delegate(
library=delegate_path,
options={"backends": backend_string, "logging-severity": "info"},
)
return armnn_delegate
def load_tf_model(model_path: Path, armnn_delegate: tflite.Delegate):
"""load a tflite model for use with the armnn delegate.
args:
- model_path: pathlib.Path
- armnn_delegate: tflite.TfLiteDelegate
returns:
- interpreter: tflite.Interpreter
"""
interpreter = tflite.Interpreter(
model_path=model_path.as_posix(), experimental_delegates=[armnn_delegate]
)
interpreter.allocate_tensors()
return interpreter
def run_inference(interpreter, input_image):
"""Run inference on a processed input image and return the output from
inference.
args:
- interpreter: tflite_runtime.interpreter.Interpreter
- input_image: np.array
returns:
- output_data: np.array
"""
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
interpreter.set_tensor(input_details[0]["index"], input_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]["index"])
return output_data
def create_mapping(label_mapping_p):
"""Creates a Python dictionary mapping an index to a label.
label_mapping[idx] = label
args:
- label_mapping_p: pathlib.Path
returns:
- label_mapping: dict
"""
idx = 0
label_mapping = {}
with open(label_mapping_p) as label_mapping_raw:
for line in label_mapping_raw:
label_mapping[idx] = line
idx += 1
return label_mapping
def process_output(output_data, label_mapping):
"""Process the output tensor into a label from the labelmapping file. Takes
the index of the maximum valur from the output array.
args:
- output_data: np.array
- label_mapping: dict
returns:
- str: labelmapping for max index.
"""
idx = np.argmax(output_data[0])
return label_mapping[idx]
def main(args):
"""Run the inference for options passed in the command line.
args:
- args: argparse.Namespace
returns:
- None
"""
# sanity check on args
check_args(args)
# load in the armnn delegate
armnn_delegate = load_delegate(args.delegate_path, args.preferred_backends)
# load tflite model
interpreter = load_tf_model(args.model_file, armnn_delegate)
# get input shape for image resizing
input_shape = interpreter.get_input_details()[0]["shape"]
height, width = input_shape[1], input_shape[2]
input_shape = (height, width)
# load input image
input_image = load_image(args.input_image, input_shape, False)
# get label mapping
labelmapping = create_mapping(args.label_file)
output_tensor = run_inference(interpreter, input_image)
output_prediction = process_output(output_tensor, labelmapping)
print("Prediction: ", output_prediction)
return None
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--input_image", help="File path of image file", type=Path, required=True
)
parser.add_argument(
"--model_file",
help="File path of the model tflite file",
type=Path,
required=True,
)
parser.add_argument(
"--label_file",
help="File path of model labelmapping file",
type=Path,
required=True,
)
parser.add_argument(
"--delegate_path",
help="File path of ArmNN delegate file",
type=Path,
required=True,
)
parser.add_argument(
"--preferred_backends",
help="list of backends in order of preference",
type=str,
nargs="+",
required=False,
default=["CpuAcc", "CpuRef"],
)
args = parser.parse_args()
main(args)
|