1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
//
// Copyright © 2022, 2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "Types.hpp"
#include "armnn/ArmNN.hpp"
#include <armnn/Logging.hpp>
#include <armnn_delegate.hpp>
#include <DelegateOptions.hpp>
#include <DelegateUtils.hpp>
#include <Profiling.hpp>
#include <tensorflow/lite/builtin_ops.h>
#include <tensorflow/lite/c/builtin_op_data.h>
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/optional_debug_tools.h>
#include <tensorflow/lite/kernels/builtin_op_kernels.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <string>
#include <vector>
namespace common
{
/**
* @brief Used to load in a network through Tflite Interpreter,
* register Armnn Delegate file to it, and run inference
* on it against a given backend.
* currently it is assumed that the input data will be
* cv:MAT (Frame), the assumption is implemented in
* PrepareTensors method, it can be generalized later
*
*/
template <typename Tout>
class ArmnnNetworkExecutor
{
private:
std::unique_ptr<tflite::Interpreter> m_interpreter;
std::unique_ptr<tflite::FlatBufferModel> m_model;
Profiling m_profiling;
void PrepareTensors(const void* inputData, const size_t dataBytes);
template <typename Enumeration>
auto log_as_int(Enumeration value)
-> typename std::underlying_type<Enumeration>::type
{
return static_cast<typename std::underlying_type<Enumeration>::type>(value);
}
public:
ArmnnNetworkExecutor() = delete;
/**
* @brief Initializes the network with the given input data.
*
*
* * @param[in] modelPath - Relative path to the model file
* * @param[in] backends - The list of preferred backends to run inference on
*/
ArmnnNetworkExecutor(std::string& modelPath,
std::vector<armnn::BackendId>& backends,
bool isProfilingEnabled = false);
/**
* @brief Returns the aspect ratio of the associated model in the order of width, height.
*/
Size GetImageAspectRatio();
/**
* @brief Returns the data type of the associated model.
*/
armnn::DataType GetInputDataType() const;
float GetQuantizationScale();
int GetQuantizationOffset();
float GetOutputQuantizationScale(int tensorIndex);
int GetOutputQuantizationOffset(int tensorIndex);
/**
* @brief Runs inference on the provided input data, and stores the results
* in the provided InferenceResults object.
*
* @param[in] inputData - input frame data
* @param[in] dataBytes - input data size in bytes
* @param[out] outResults - Vector of DetectionResult objects used to store the output result.
*/
bool Run(const void *inputData, const size_t dataBytes,
InferenceResults<Tout> &outResults);
};
template <typename Tout>
ArmnnNetworkExecutor<Tout>::ArmnnNetworkExecutor(std::string& modelPath,
std::vector<armnn::BackendId>& preferredBackends,
bool isProfilingEnabled):
m_profiling(isProfilingEnabled)
{
m_profiling.ProfilingStart();
armnn::OptimizerOptionsOpaque optimizerOptions;
m_model = tflite::FlatBufferModel::BuildFromFile(modelPath.c_str());
if (m_model == nullptr)
{
const std::string errorMessage{"ArmnnNetworkExecutor: Failed to build the model"};
ARMNN_LOG(error) << errorMessage;
throw armnn::Exception(errorMessage);
}
m_profiling.ProfilingStopAndPrintUs("Loading the model took");
m_profiling.ProfilingStart();
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*m_model, resolver)(&m_interpreter);
if (m_interpreter->AllocateTensors() != kTfLiteOk)
{
const std::string errorMessage{"ArmnnNetworkExecutor: Failed to alloc tensors"};
ARMNN_LOG(error) << errorMessage;
throw armnn::Exception(errorMessage);
}
m_profiling.ProfilingStopAndPrintUs("Create the tflite interpreter");
/* create delegate options */
m_profiling.ProfilingStart();
/* enable fast math optimization */
armnn::BackendOptions modelOptionGpu("GpuAcc", {{"FastMathEnabled", true}});
optimizerOptions.AddModelOption(modelOptionGpu);
armnn::BackendOptions modelOptionCpu("CpuAcc", {{"FastMathEnabled", true}});
optimizerOptions.AddModelOption(modelOptionCpu);
/* enable reduce float32 to float16 optimization */
optimizerOptions.SetReduceFp32ToFp16(true);
armnnDelegate::DelegateOptions delegateOptions(preferredBackends, optimizerOptions);
/* create delegate object */
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
/* Register the delegate file */
m_interpreter->ModifyGraphWithDelegate(std::move(theArmnnDelegate));
m_profiling.ProfilingStopAndPrintUs("Create and load ArmNN Delegate");
}
template<typename Tout>
void ArmnnNetworkExecutor<Tout>::PrepareTensors(const void* inputData, const size_t dataBytes)
{
size_t inputTensorSize = m_interpreter->input_tensor(0)->bytes;
auto * inputTensorPtr = m_interpreter->input_tensor(0)->data.raw;
assert(inputTensorSize >= dataBytes);
if (inputData == nullptr)
{
const std::string errorMessage{"ArmnnNetworkExecutor: input data pointer is null"};
ARMNN_LOG(error) << errorMessage;
throw armnn::Exception(errorMessage);
}
if (inputTensorPtr != nullptr)
{
memcpy(inputTensorPtr, inputData, inputTensorSize);
}
else
{
const std::string errorMessage{"ArmnnNetworkExecutor: input tensor pointer is null"};
ARMNN_LOG(error) << errorMessage;
throw armnn::Exception(errorMessage);
}
}
template <typename Tout>
bool ArmnnNetworkExecutor<Tout>::Run(const void *inputData, const size_t dataBytes,
InferenceResults<Tout>& outResults)
{
bool ret = false;
m_profiling.ProfilingStart();
PrepareTensors(inputData, dataBytes);
if (m_interpreter->Invoke() == kTfLiteOk)
{
ret = true;
// Extract the output tensor data.
outResults.clear();
outResults.reserve(m_interpreter->outputs().size());
for (int index = 0; index < m_interpreter->outputs().size(); index++)
{
size_t size = m_interpreter->output_tensor(index)->bytes / sizeof(Tout);
const Tout *p_Output = m_interpreter->typed_output_tensor<Tout>(index);
if (p_Output != nullptr) {
InferenceResult<float> outRes(p_Output, p_Output + size);
outResults.emplace_back(outRes);
}
else
{
const std::string errorMessage{"ArmnnNetworkExecutor: p_Output tensor is null"};
ARMNN_LOG(error) << errorMessage;
ret = false;
}
}
}
else
{
const std::string errorMessage{"ArmnnNetworkExecutor: Invoke has failed"};
ARMNN_LOG(error) << errorMessage;
}
m_profiling.ProfilingStopAndPrintUs("Perform inference");
return ret;
}
template <typename Tout>
Size ArmnnNetworkExecutor<Tout>::GetImageAspectRatio()
{
assert(m_interpreter->tensor(m_interpreter->inputs()[0])->dims->size == 4);
return Size(m_interpreter->tensor(m_interpreter->inputs()[0])->dims->data[2],
m_interpreter->tensor(m_interpreter->inputs()[0])->dims->data[1]);
}
template <typename Tout>
armnn::DataType ArmnnNetworkExecutor<Tout>::GetInputDataType() const
{
return GetDataType(*(m_interpreter->tensor(m_interpreter->inputs()[0])));
}
template <typename Tout>
float ArmnnNetworkExecutor<Tout>::GetQuantizationScale()
{
return m_interpreter->tensor(m_interpreter->inputs()[0])->params.scale;
}
template <typename Tout>
int ArmnnNetworkExecutor<Tout>::GetQuantizationOffset()
{
return m_interpreter->tensor(m_interpreter->inputs()[0])->params.zero_point;
}
template <typename Tout>
float ArmnnNetworkExecutor<Tout>::GetOutputQuantizationScale(int tensorIndex)
{
assert(m_interpreter->outputs().size() > tensorIndex);
return m_interpreter->tensor(m_interpreter->outputs()[tensorIndex])->params.scale;
}
template <typename Tout>
int ArmnnNetworkExecutor<Tout>::GetOutputQuantizationOffset(int tensorIndex)
{
assert(m_interpreter->outputs().size() > tensorIndex);
return m_interpreter->tensor(m_interpreter->outputs()[tensorIndex])->params.zero_point;
}
}// namespace common
|