1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
//
// Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <catch.hpp>
#include <limits>
#include "MathUtils.hpp"
#include <iostream>
#include <numeric>
TEST_CASE("Test DotProductF32")
{
// Test Constants:
const int length = 6;
float inputA[] = { 1, 1, 1, 0, 0, 0 };
float inputB[] = { 0, 0, 0, 1, 1, 1 };
float dot_prod = MathUtils::DotProductF32(inputA, inputB, length);
float expectedResult = 0;
CHECK(dot_prod == expectedResult);
}
TEST_CASE("Test FFT32")
{
// Test Constants:
std::vector<float> input(32, 0);
std::vector<float> output(32);
std::vector<float> expectedResult(32, 0);
MathUtils::FftF32(input, output);
// To avoid common failed assertions due to rounding of near-zero values a small offset is added
transform(output.begin(), output.end(), output.begin(),
bind2nd(std::plus<double>(), 0.1));
transform(expectedResult.begin(), expectedResult.end(), expectedResult.begin(),
bind2nd(std::plus<double>(), 0.1));
for (int i = 0; i < output.size(); i++)
{
CHECK (expectedResult[i] == Approx(output[i]));
}
}
TEST_CASE("Test ComplexMagnitudeSquaredF32")
{
// Test Constants:
float input[] = { 0.0, 0.0, 0.5, 0.5,1,1 };
int inputLen = (sizeof(input)/sizeof(*input));
float expectedResult[] = { 0.0, 0.5, 2 };
int outputLen = inputLen/2;
float output[outputLen];
MathUtils::ComplexMagnitudeSquaredF32(input, inputLen, output, outputLen);
for (int i = 0; i < outputLen; i++)
{
CHECK (expectedResult[i] == Approx(output[i]));
}
}
TEST_CASE("Test VecLogarithmF32")
{
// Test Constants:
std::vector<float> input = { 1, 0.1e-10 };
std::vector<float> expectedResult = { 0, -25.328436 };
std::vector<float> output(input.size());
MathUtils::VecLogarithmF32(input,output);
for (int i = 0; i < input.size(); i++)
{
CHECK (expectedResult[i] == Approx(output[i]));
}
}
TEST_CASE("Test MeanF32")
{
// Test Constants:
float input[] = { 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000 };
uint32_t inputLen = (sizeof(input)/sizeof(*input));
float output;
// Manually calculated mean of above array
float expectedResult = 0.100;
output = MathUtils::MeanF32(input, inputLen);
CHECK (expectedResult == Approx(output));
}
TEST_CASE("Test StdDevF32")
{
// Test Constants:
float input[] = { 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000 };
uint32_t inputLen = (sizeof(input)/sizeof(*input));
// Calculate mean using std library to avoid dependency on MathUtils::MeanF32
float mean = (std::accumulate(input, input + inputLen, 0.0f))/float(inputLen);
float output = MathUtils::StdDevF32(input, inputLen, mean);
// Manually calculated standard deviation of above array
float expectedResult = 0.300;
CHECK (expectedResult == Approx(output));
}
|