1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
//
// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "ExecuteNetworkParams.hpp"
#include "NetworkExecutionUtils/NetworkExecutionUtils.hpp"
#include <armnn/Logging.hpp>
#include <fmt/format.h>
#include <armnnUtils/Filesystem.hpp>
void CheckClTuningParameter(const int& tuningLevel,
const std::string& tuningPath,
const std::vector<armnn::BackendId> computeDevices)
{
if (!tuningPath.empty())
{
if (tuningLevel == 0)
{
ARMNN_LOG(info) << "Using cl tuning file: " << tuningPath << "\n";
if (!ValidatePath(tuningPath, true))
{
throw armnn::InvalidArgumentException("The tuning path is not valid");
}
}
else if ((1 <= tuningLevel) && (tuningLevel <= 3))
{
ARMNN_LOG(info) << "Starting execution to generate a cl tuning file: " << tuningPath << "\n"
<< "Tuning level in use: " << tuningLevel << "\n";
}
else if ((0 < tuningLevel) || (tuningLevel > 3))
{
throw armnn::InvalidArgumentException(fmt::format("The tuning level {} is not valid.",
tuningLevel));
}
// Ensure that a GpuAcc is enabled. Otherwise no tuning data are used or genereted
// Only warn if it's not enabled
auto it = std::find(computeDevices.begin(), computeDevices.end(), "GpuAcc");
if (it == computeDevices.end())
{
ARMNN_LOG(warning) << "To use Cl Tuning the compute device GpuAcc needs to be active.";
}
}
}
void ExecuteNetworkParams::ValidateParams()
{
if (m_DynamicBackendsPath == "")
{
// Check compute devices are valid unless they are dynamically loaded at runtime
std::string invalidBackends;
if (!CheckRequestedBackendsAreValid(m_ComputeDevices, armnn::Optional<std::string&>(invalidBackends)))
{
ARMNN_LOG(fatal) << "The list of preferred devices contains invalid backend IDs: "
<< invalidBackends;
}
}
CheckClTuningParameter(m_TuningLevel, m_TuningPath, m_ComputeDevices);
if (m_EnableBf16TurboMode && !m_EnableFastMath)
{
throw armnn::InvalidArgumentException("To use BF16 please use --enable-fast-math. ");
}
// Check input tensor shapes
if ((m_InputTensorShapes.size() != 0) &&
(m_InputTensorShapes.size() != m_InputNames.size()))
{
throw armnn::InvalidArgumentException("input-name and input-tensor-shape must have "
"the same amount of elements. ");
}
if (m_InputTensorDataFilePaths.size() != 0)
{
if (!ValidatePaths(m_InputTensorDataFilePaths, true))
{
throw armnn::InvalidArgumentException("One or more input data file paths are not valid.");
}
if (m_InputTensorDataFilePaths.size() < m_InputNames.size())
{
throw armnn::InvalidArgumentException(
fmt::format("According to the number of input names the user provided the network has {} "
"inputs. But only {} input-tensor-data file paths were provided. Each input of the "
"model is expected to be stored in it's own file.",
m_InputNames.size(),
m_InputTensorDataFilePaths.size()));
}
}
// Check that threshold time is not less than zero
if (m_ThresholdTime < 0)
{
throw armnn::InvalidArgumentException("Threshold time supplied as a command line argument is less than zero.");
}
// Warn if ExecuteNetwork will generate dummy input data
if (m_GenerateTensorData)
{
ARMNN_LOG(warning) << "No input files provided, input tensors will be filled with 0s.";
}
if (m_AllowExpandedDims && m_InferOutputShape)
{
throw armnn::InvalidArgumentException("infer-output-shape and allow-expanded-dims cannot be used together.");
}
}
#if defined(ARMNN_TFLITE_DELEGATE)
/**
* A utility method that populates a DelegateOptions object from this ExecuteNetworkParams.
*
* @return a populated armnnDelegate::DelegateOptions object.
*/
armnnDelegate::DelegateOptions ExecuteNetworkParams::ToDelegateOptions() const
{
armnnDelegate::DelegateOptions delegateOptions(m_ComputeDevices);
delegateOptions.SetDynamicBackendsPath(m_DynamicBackendsPath);
delegateOptions.SetGpuProfilingState(m_EnableProfiling);
delegateOptions.SetInternalProfilingParams(m_EnableProfiling, armnn::ProfilingDetailsMethod::Undefined);
if (m_OutputDetailsOnlyToStdOut)
{
delegateOptions.SetInternalProfilingParams(m_EnableProfiling, armnn::ProfilingDetailsMethod::DetailsOnly);
}
else if (m_OutputDetailsToStdOut)
{
delegateOptions.SetInternalProfilingParams(m_EnableProfiling, armnn::ProfilingDetailsMethod::DetailsWithEvents);
}
// GPU Backend options first.
{
armnn::BackendOptions gpuOption("GpuAcc", {{"TuningLevel", m_TuningLevel}});
delegateOptions.AddBackendOption(gpuOption);
}
{
armnn::BackendOptions gpuOption("GpuAcc", {{"TuningFile", m_TuningPath.c_str()}});
delegateOptions.AddBackendOption(gpuOption);
}
{
armnn::BackendOptions gpuOption("GpuAcc", {{"KernelProfilingEnabled", m_EnableProfiling}});
delegateOptions.AddBackendOption(gpuOption);
}
// Optimizer options next.
armnn::OptimizerOptionsOpaque optimizerOptions;
optimizerOptions.SetReduceFp32ToFp16(m_EnableFp16TurboMode);
optimizerOptions.SetDebugEnabled(m_PrintIntermediate);
optimizerOptions.SetDebugToFileEnabled(m_PrintIntermediateOutputsToFile);
optimizerOptions.SetProfilingEnabled(m_EnableProfiling);
optimizerOptions.SetShapeInferenceMethod(armnn::ShapeInferenceMethod::ValidateOnly);
if (m_InferOutputShape)
{
optimizerOptions.SetShapeInferenceMethod(armnn::ShapeInferenceMethod::InferAndValidate);
armnn::BackendOptions networkOption("ShapeInferenceMethod",
{
{"InferAndValidate", true}
});
optimizerOptions.AddModelOption(networkOption);
}
{
armnn::BackendOptions option("GpuAcc", {{"FastMathEnabled", m_EnableFastMath}});
optimizerOptions.AddModelOption(option);
}
{
armnn::BackendOptions option("GpuAcc", {{"CachedNetworkFilePath", m_CachedNetworkFilePath}});
optimizerOptions.AddModelOption(option);
}
{
armnn::BackendOptions option("GpuAcc", {{"MLGOTuningFilePath", m_MLGOTuningFilePath}});
optimizerOptions.AddModelOption(option);
}
armnn::BackendOptions cpuAcc("CpuAcc",
{
{ "FastMathEnabled", m_EnableFastMath },
{ "NumberOfThreads", m_NumberOfThreads }
});
optimizerOptions.AddModelOption(cpuAcc);
if (m_AllowExpandedDims)
{
armnn::BackendOptions networkOption("AllowExpandedDims",
{
{"AllowExpandedDims", true}
});
optimizerOptions.AddModelOption(networkOption);
}
delegateOptions.SetOptimizerOptions(optimizerOptions);
return delegateOptions;
}
#endif
|