1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
|
//
// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "ExecuteNetworkProgramOptions.hpp"
#include "NetworkExecutionUtils/NetworkExecutionUtils.hpp"
#include <armnn/BackendRegistry.hpp>
#include <armnn/Exceptions.hpp>
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/StringUtils.hpp>
#include <armnn/Logging.hpp>
#include <fmt/format.h>
bool CheckOption(const cxxopts::ParseResult& result,
const char* option)
{
// Check that the given option is valid.
if (option == nullptr)
{
return false;
}
// Check whether 'option' is provided.
return ((result.count(option)) ? true : false);
}
void CheckOptionDependency(const cxxopts::ParseResult& result,
const char* option,
const char* required)
{
// Check that the given options are valid.
if (option == nullptr || required == nullptr)
{
throw cxxopts::exceptions::exception("Invalid option to check dependency for");
}
// Check that if 'option' is provided, 'required' is also provided.
if (CheckOption(result, option) && !result[option].has_default())
{
if (CheckOption(result, required) == 0 || result[required].has_default())
{
throw cxxopts::exceptions::exception(
std::string("Option '") + option + "' requires option '" + required + "'.");
}
}
}
void CheckOptionDependencies(const cxxopts::ParseResult& result)
{
CheckOptionDependency(result, "tuning-level", "tuning-path");
}
void RemoveDuplicateDevices(std::vector<armnn::BackendId>& computeDevices)
{
// Mark the duplicate devices as 'Undefined'.
for (auto i = computeDevices.begin(); i != computeDevices.end(); ++i)
{
for (auto j = std::next(i); j != computeDevices.end(); ++j)
{
if (*j == *i)
{
*j = armnn::Compute::Undefined;
}
}
}
// Remove 'Undefined' devices.
computeDevices.erase(std::remove(computeDevices.begin(), computeDevices.end(), armnn::Compute::Undefined),
computeDevices.end());
}
/// Takes a vector of backend strings and returns a vector of backendIDs.
/// Removes duplicate entries.
/// Can handle backend strings that contain multiple backends separated by comma e.g "CpuRef,CpuAcc"
std::vector<armnn::BackendId> GetBackendIDs(const std::vector<std::string>& backendStringsVec)
{
std::vector<armnn::BackendId> backendIDs;
for (const auto& backendStrings : backendStringsVec)
{
// Each backendStrings might contain multiple backends separated by comma e.g "CpuRef,CpuAcc"
std::vector<std::string> backendStringVec = ParseStringList(backendStrings, ",");
for (const auto& b : backendStringVec)
{
backendIDs.push_back(armnn::BackendId(b));
}
}
RemoveDuplicateDevices(backendIDs);
return backendIDs;
}
/// Provides a segfault safe way to get cxxopts option values by checking if the option was defined.
/// If the option wasn't defined it returns an empty object.
template<typename optionType>
optionType GetOptionValue(std::string&& optionName, const cxxopts::ParseResult& result)
{
optionType out;
if(result.count(optionName))
{
out = result[optionName].as<optionType>();
}
return out;
}
void LogAndThrowFatal(std::string errorMessage)
{
throw armnn::InvalidArgumentException (errorMessage);
}
void CheckRequiredOptions(const cxxopts::ParseResult& result)
{
// For each option in option-group "a) Required
std::vector<std::string> requiredOptions{"compute",
"model-path"
};
bool requiredMissing = false;
for(auto const& str : requiredOptions)
{
if(!(result.count(str) > 0))
{
ARMNN_LOG(error) << fmt::format("The program option '{}' is mandatory but wasn't provided.", str);
requiredMissing = true;
}
}
if(requiredMissing)
{
throw armnn::InvalidArgumentException ("Some required arguments are missing");
}
}
void CheckForDeprecatedOptions(const cxxopts::ParseResult& result)
{
if(result.count("armnn-tflite-delegate") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'armnn-tflite-delegate' is deprecated and will be "
"removed soon. Please use the option 'tflite-executor' instead.";
}
if(result.count("concurrent") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'concurrent' is deprecated and will be "
"removed soon. Please use the option '\"P, thread-pool-size\"' instead.";
}
if(result.count("input-type") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'input-type' is deprecated and will be "
"removed soon. The input-types are now automatically set.";
}
if(result.count("input-name") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'input-name' is deprecated and will be "
"removed soon. The input-names are now automatically set.";
}
if(result.count("output-type") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'output-type' is deprecated and will be "
"removed soon. The output-types are now automatically set.";
}
if(result.count("output-name") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'output-name' is deprecated and will be "
"removed soon. The output-names are now automatically set.";
}
if(result.count("model-format") > 0)
{
ARMNN_LOG(warning) << "DEPRECATED: The program option 'model-format' is deprecated and will be "
"removed soon. The model-format is now automatically set.";
}
}
void ProgramOptions::ValidateExecuteNetworkParams()
{
m_ExNetParams.ValidateParams();
}
void ProgramOptions::ValidateRuntimeOptions()
{
if (m_RuntimeOptions.m_ProfilingOptions.m_TimelineEnabled &&
!m_RuntimeOptions.m_ProfilingOptions.m_EnableProfiling)
{
LogAndThrowFatal("Timeline profiling requires external profiling to be turned on");
}
}
ProgramOptions::ProgramOptions() : m_CxxOptions{"ExecuteNetwork",
"Executes a neural network model using the provided input "
"tensor. Prints the resulting output tensor."}
{
try
{
// cxxopts doesn't provide a mechanism to ensure required options are given. There is a
// separate function CheckRequiredOptions() for that.
m_CxxOptions.add_options("a) Required")
("c,compute",
"Which device to run layers on by default. If a single device doesn't support all layers in the model "
"you can specify a second or third to fall back on. Possible choices: "
+ armnn::BackendRegistryInstance().GetBackendIdsAsString()
+ " NOTE: Multiple compute devices need to be passed as a comma separated list without whitespaces "
"e.g. GpuAcc,CpuAcc,CpuRef or by repeating the program option e.g. '-c CpuAcc -c CpuRef'. "
"Duplicates are ignored.",
cxxopts::value<std::vector<std::string>>())
("f,model-format",
"armnn-binary, onnx-binary, onnx-text, tflite-binary"
"DEPRECATED: The program option 'model-format' is deprecated and will be "
"removed soon. The model-format is now automatically set.",
cxxopts::value<std::string>())
("m,model-path",
"Path to model file, e.g. .armnn, , .prototxt, .tflite, .onnx",
cxxopts::value<std::string>(m_ExNetParams.m_ModelPath))
("i,input-name",
"Identifier of the input tensors in the network separated by comma."
"This option is not required, but can be used to set the order of inputs",
cxxopts::value<std::string>())
("o,output-name",
"Identifier of the output tensors in the network separated by comma."
"This option is not required, but can be used to set the order of outputs",
cxxopts::value<std::string>());
m_CxxOptions.add_options("b) General")
("b,dynamic-backends-path",
"Path where to load any available dynamic backend from. "
"If left empty (the default), dynamic backends will not be used.",
cxxopts::value<std::string>(m_RuntimeOptions.m_DynamicBackendsPath))
("P, thread-pool-size",
"Run the network using the Arm NN thread pool with the number of threads provided. ",
cxxopts::value<size_t>(m_ExNetParams.m_ThreadPoolSize)->default_value("0"))
("n,concurrent",
"This option is for Arm NN internal asynchronous testing purposes. "
"False by default. If set to true will use std::launch::async or the Arm NN thread pool, "
"if 'thread-pool-size' is greater than 0, for asynchronous execution."
"DEPRECATED: The program option 'concurrent' is deprecated and will be "
"removed soon. Please use the option '\"P, thread-pool-size\"' instead.",
cxxopts::value<bool>(m_ExNetParams.m_Concurrent)->default_value("false")->implicit_value("true"))
("d,input-tensor-data",
"Path to files containing the input data as a flat array separated by whitespace. "
"Several paths can be passed by separating them with a comma if the network has multiple inputs "
"or you wish to run the model multiple times with different input data using the 'iterations' option. "
"If not specified, the network will be run with dummy data (useful for profiling).",
cxxopts::value<std::string>()->default_value(""))
("h,help", "Display usage information")
("infer-output-shape",
"Infers output tensor shape from input tensor shape and validate where applicable (where supported by "
"parser)",
cxxopts::value<bool>(m_ExNetParams.m_InferOutputShape)->default_value("false")->implicit_value("true"))
("allow-expanded-dims",
"If true will disregard dimensions with a size of 1 when validating tensor shapes. Tensor sizes must "
"still match. This is an Experimental parameter that is incompatible with infer-output-shape. "
"This parameter may be removed in a later update. ",
cxxopts::value<bool>(m_ExNetParams.m_AllowExpandedDims)->default_value("false")
->implicit_value("true"))
("I,iterations",
"Number of iterations to run the network for, default is set to 1. "
"If you wish to run the model with different input data for every execution you can do so by "
"supplying more input file paths to the 'input-tensor-data' option. "
"Note: The number of input files provided must be divisible by the number of inputs of the model. "
"e.g. Your model has 2 inputs and you supply 4 input files. If you set 'iterations' to 6 the first "
"run will consume the first two inputs, the second the next two and the last will begin from the "
"start and use the first two inputs again. "
"Note: If the 'concurrent' option is enabled all iterations will be run asynchronously.",
cxxopts::value<size_t>(m_ExNetParams.m_Iterations)->default_value("1"))
("l,dequantize-output",
"If this option is enabled, all quantized outputs will be dequantized to float. "
"If unset, default to not get dequantized. "
"Accepted values (true or false)"
" (Not available when executing ArmNNTfLiteDelegate or TfliteInterpreter)",
cxxopts::value<bool>(m_ExNetParams.m_DequantizeOutput)->default_value("false")->implicit_value("true"))
("p,print-intermediate-layers",
"If this option is enabled, the output of every graph layer will be printed.",
cxxopts::value<bool>(m_ExNetParams.m_PrintIntermediate)->default_value("false")
->implicit_value("true"))
("F,print-intermediate-layers-to-file",
"If this option is enabled, the output of every graph layer will be printed within separate files.",
cxxopts::value<bool>(m_ExNetParams.m_PrintIntermediateOutputsToFile)->default_value("false")
->implicit_value("true"))
("parse-unsupported",
"Add unsupported operators as stand-in layers (where supported by parser)",
cxxopts::value<bool>(m_ExNetParams.m_ParseUnsupported)->default_value("false")->implicit_value("true"))
("N,do-not-print-output",
"The default behaviour of ExecuteNetwork is to print the resulting outputs on the console. "
"This behaviour can be changed by adding this flag to your command.",
cxxopts::value<bool>(m_ExNetParams.m_DontPrintOutputs)->default_value("false")->implicit_value("true"))
("q,quantize-input",
"If this option is enabled, all float inputs will be quantized as appropriate for the model's inputs. "
"If unset, default to not quantized. Accepted values (true or false)"
" (Not available when executing ArmNNTfLiteDelegate or TfliteInterpreter)",
cxxopts::value<bool>(m_ExNetParams.m_QuantizeInput)->default_value("false")->implicit_value("true"))
("r,threshold-time",
"Threshold time is the maximum allowed time for inference measured in milliseconds. If the actual "
"inference time is greater than the threshold time, the test will fail. By default, no threshold "
"time is used.",
cxxopts::value<double>(m_ExNetParams.m_ThresholdTime)->default_value("0.0"))
("s,input-tensor-shape",
"The shape of the input tensors in the network as a flat array of integers separated by comma."
"Several shapes can be passed by separating them with a colon (:).",
cxxopts::value<std::string>())
("v,visualize-optimized-model",
"Enables built optimized model visualizer. If unset, defaults to off.",
cxxopts::value<bool>(m_ExNetParams.m_EnableLayerDetails)->default_value("false")
->implicit_value("true"))
("w,write-outputs-to-file",
"Comma-separated list of output file paths keyed with the binding-id of the output slot. "
"If left empty (the default), the output tensors will not be written to a file.",
cxxopts::value<std::string>())
("x,subgraph-number",
"Id of the subgraph to be executed. Defaults to 0."
" (Not available when executing ArmNNTfLiteDelegate or TfliteInterpreter)",
cxxopts::value<size_t>(m_ExNetParams.m_SubgraphId)->default_value("0"))
("y,input-type",
"The type of the input tensors in the network separated by comma. "
"If unset, defaults to \"float\" for all defined inputs. "
"Accepted values (float, int, qasymms8 or qasymmu8)."
"DEPRECATED: The program option 'input-type' is deprecated and will be "
"removed soon. The input-types are now automatically set.",
cxxopts::value<std::string>())
("z,output-type",
"The type of the output tensors in the network separated by comma. "
"If unset, defaults to \"float\" for all defined outputs. "
"Accepted values (float, int, qasymms8 or qasymmu8)."
"DEPRECATED: The program option 'output-type' is deprecated and will be "
"removed soon. The output-types are now automatically set.",
cxxopts::value<std::string>())
("T,tflite-executor",
"Set the executor for the tflite model: parser, delegate, tflite"
"parser is the ArmNNTfLiteParser, "
"delegate is the ArmNNTfLiteDelegate, "
"opaquedelegate is the ArmNNTfLiteOpaqueDelegate, "
"tflite is the TfliteInterpreter",
cxxopts::value<std::string>()->default_value("parser"))
("C, compare-output",
"Perform a per byte root mean square error calculation of the inference output with an output"
" file(s) that has been previously produced by running a network through ExecuteNetwork."
" See --write-outputs-to-file to produce an output file(s) for an execution.",
cxxopts::value<std::string>(m_ExNetParams.m_ComparisonFile))
("B, compare-output-with-backend",
"Perform a per byte root mean square error calculation of the output of the inference with a"
" different backend.",
cxxopts::value<std::vector<std::string>>())
("A, compare-with-tflite",
"Perform an per byte root mean square error calculation of the output of the inference with"
" the tflite ref model.",
cxxopts::value<bool>(m_ExNetParams.m_CompareWithTflite)->default_value("false")
->implicit_value("true"));
m_CxxOptions.add_options("c) Optimization")
("bf16-turbo-mode",
"This option is no longer being used. In order to use bf16 please set enable-fast-math "
"to true",
cxxopts::value<bool>(m_ExNetParams.m_EnableBf16TurboMode)
->default_value("false")->implicit_value("true"))
("enable-fast-math",
"Enables fast_math options in backends that support it. Using the fast_math flag can lead to "
"performance improvements but may result in reduced or different precision. ",
cxxopts::value<bool>(m_ExNetParams.m_EnableFastMath)->default_value("false")->implicit_value("true"))
("number-of-threads",
"Assign the number of threads used by the CpuAcc backend. "
"Input value must be between 1 and 64. "
"Default is set to 0 (Backend will decide number of threads to use).",
cxxopts::value<unsigned int>(m_ExNetParams.m_NumberOfThreads)->default_value("0"))
("save-cached-network",
"Enables saving of the cached network to a file given with the cached-network-filepath option. "
"See also --cached-network-filepath",
cxxopts::value<bool>(m_ExNetParams.m_SaveCachedNetwork)
->default_value("false")->implicit_value("true"))
("cached-network-filepath",
"If non-empty, the given file will be used to load/save the cached network. "
"If save-cached-network is given then the cached network will be saved to the given file. "
"To save the cached network a file must already exist. "
"If save-cached-network is not given then the cached network will be loaded from the given file. "
"This will remove initial compilation time of kernels and speed up the first execution.",
cxxopts::value<std::string>(m_ExNetParams.m_CachedNetworkFilePath)->default_value(""))
("fp16-turbo-mode",
"If this option is enabled, FP32 layers, "
"weights and biases will be converted to FP16 where the backend supports it. "
"If the first preferred backend does not have FP16 support, this option will be disabled. "
"If the value of converted FP16 is infinity, round to the closest finite FP16 value.",
cxxopts::value<bool>(m_ExNetParams.m_EnableFp16TurboMode)
->default_value("false")->implicit_value("true"))
("tuning-level",
"Sets the tuning level which enables a tuning run which will update/create a tuning file. "
"Available options are: 1 (Rapid), 2 (Normal), 3 (Exhaustive). "
"Requires tuning-path to be set, default is set to 0 (No tuning run)",
cxxopts::value<int>(m_ExNetParams.m_TuningLevel)->default_value("0"))
("tuning-path",
"Path to tuning file. Enables use of CL tuning",
cxxopts::value<std::string>(m_ExNetParams.m_TuningPath))
("MLGOTuningFilePath",
"Path to tuning file. Enables use of CL MLGO tuning",
cxxopts::value<std::string>(m_ExNetParams.m_MLGOTuningFilePath))
("R, reuse-buffers",
"If enabled then the IO buffers will be reused for each inference",
cxxopts::value<bool>(m_ExNetParams.m_ReuseBuffers)->default_value("false")->implicit_value("true"));
m_CxxOptions.add_options("d) Profiling")
("a,enable-external-profiling",
"If enabled external profiling will be switched on",
cxxopts::value<bool>(m_RuntimeOptions.m_ProfilingOptions.m_EnableProfiling)
->default_value("false")->implicit_value("true"))
("e,event-based-profiling",
"Enables built in profiler. If unset, defaults to off.",
cxxopts::value<bool>(m_ExNetParams.m_EnableProfiling)->default_value("false")->implicit_value("true"))
("g,file-only-external-profiling",
"If enabled then the 'file-only' test mode of external profiling will be enabled",
cxxopts::value<bool>(m_RuntimeOptions.m_ProfilingOptions.m_FileOnly)
->default_value("false")->implicit_value("true"))
("file-format",
"If profiling is enabled specifies the output file format",
cxxopts::value<std::string>(m_RuntimeOptions.m_ProfilingOptions.m_FileFormat)->default_value("binary"))
("j,outgoing-capture-file",
"If specified the outgoing external profiling packets will be captured in this binary file",
cxxopts::value<std::string>(m_RuntimeOptions.m_ProfilingOptions.m_OutgoingCaptureFile))
("k,incoming-capture-file",
"If specified the incoming external profiling packets will be captured in this binary file",
cxxopts::value<std::string>(m_RuntimeOptions.m_ProfilingOptions.m_IncomingCaptureFile))
("timeline-profiling",
"If enabled timeline profiling will be switched on, requires external profiling",
cxxopts::value<bool>(m_RuntimeOptions.m_ProfilingOptions.m_TimelineEnabled)
->default_value("false")->implicit_value("true"))
("u,counter-capture-period",
"If profiling is enabled in 'file-only' mode this is the capture period that will be used in the test",
cxxopts::value<uint32_t>(m_RuntimeOptions.m_ProfilingOptions.m_CapturePeriod)->default_value("150"))
("output-network-details",
"Outputs layer tensor infos and descriptors to std out along with profiling events. Defaults to off.",
cxxopts::value<bool>(m_ExNetParams.m_OutputDetailsToStdOut)->default_value("false")
->implicit_value("true"))
("output-network-details-only",
"Outputs layer tensor infos and descriptors to std out without profiling events. Defaults to off.",
cxxopts::value<bool>(m_ExNetParams.m_OutputDetailsOnlyToStdOut)->default_value("false")
->implicit_value("true"))
("import-inputs-if-aligned",
"In & Out tensors will be imported per inference if the memory alignment allows. Defaults to false.",
cxxopts::value<bool>(m_ExNetParams.m_ImportInputsIfAligned)->default_value("false")
->implicit_value("true"));
}
catch (const std::exception& e)
{
ARMNN_ASSERT_MSG(false, "Caught unexpected exception");
ARMNN_LOG(fatal) << "Fatal internal error: " << e.what();
exit(EXIT_FAILURE);
}
}
ProgramOptions::ProgramOptions(int ac, const char* av[]): ProgramOptions()
{
ParseOptions(ac, av);
}
void ProgramOptions::ParseOptions(int ac, const char* av[])
{
// Parses the command-line.
m_CxxResult = m_CxxOptions.parse(ac, av);
if (m_CxxResult.count("help") || ac <= 1)
{
std::cout << m_CxxOptions.help() << std::endl;
exit(EXIT_SUCCESS);
}
CheckRequiredOptions(m_CxxResult);
CheckOptionDependencies(m_CxxResult);
CheckForDeprecatedOptions(m_CxxResult);
if ((m_ExNetParams.m_OutputDetailsToStdOut ||
m_ExNetParams.m_OutputDetailsOnlyToStdOut) &&
!m_ExNetParams.m_EnableProfiling)
{
throw cxxopts::exceptions::exception("You must enable profiling if you would like to output layer details");
}
// Some options can't be assigned directly because they need some post-processing:
auto computeDevices = GetOptionValue<std::vector<std::string>>("compute", m_CxxResult);
m_ExNetParams.m_ComputeDevices = GetBackendIDs(computeDevices);
m_ExNetParams.m_InputNames =
ParseStringList(GetOptionValue<std::string>("input-name", m_CxxResult), ",");
m_ExNetParams.m_InputTensorDataFilePaths =
ParseStringList(GetOptionValue<std::string>("input-tensor-data", m_CxxResult), ",");
m_ExNetParams.m_OutputNames =
ParseStringList(GetOptionValue<std::string>("output-name", m_CxxResult), ",");
m_ExNetParams.m_OutputTensorFiles =
ParseStringList(GetOptionValue<std::string>("write-outputs-to-file", m_CxxResult), ",");
m_ExNetParams.m_GenerateTensorData = m_ExNetParams.m_InputTensorDataFilePaths.empty();
m_ExNetParams.m_DynamicBackendsPath = m_RuntimeOptions.m_DynamicBackendsPath;
m_RuntimeOptions.m_EnableGpuProfiling = m_ExNetParams.m_EnableProfiling;
std::string tfliteExecutor = GetOptionValue<std::string>("tflite-executor", m_CxxResult);
if (tfliteExecutor.size() == 0 || tfliteExecutor == "parser")
{
m_ExNetParams.m_TfLiteExecutor = ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteParser;
}
else if (tfliteExecutor == "opaquedelegate")
{
m_ExNetParams.m_TfLiteExecutor = ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteOpaqueDelegate;
}
else if (tfliteExecutor == "delegate")
{
m_ExNetParams.m_TfLiteExecutor = ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate;
}
else if (tfliteExecutor == "tflite")
{
m_ExNetParams.m_TfLiteExecutor = ExecuteNetworkParams::TfLiteExecutor::TfliteInterpreter;
}
else
{
ARMNN_LOG(info) << fmt::format("Invalid tflite-executor option '{}'.", tfliteExecutor);
throw armnn::InvalidArgumentException ("Invalid tflite-executor option");
}
// For backwards compatibility when deprecated options are used
if (m_ExNetParams.m_EnableDelegate)
{
m_ExNetParams.m_TfLiteExecutor = ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate;
}
// Set concurrent to true if the user expects to run inferences asynchronously
if (m_ExNetParams.m_Concurrent)
{
m_ExNetParams.m_ThreadPoolSize = 1;
}
if (m_ExNetParams.m_ThreadPoolSize > 0)
{
m_ExNetParams.m_Concurrent = true;
}
// Parse input tensor shape from the string we got from the command-line.
std::vector<std::string> inputTensorShapesVector =
ParseStringList(GetOptionValue<std::string>("input-tensor-shape", m_CxxResult), ":");
if (!inputTensorShapesVector.empty())
{
m_ExNetParams.m_InputTensorShapes.reserve(inputTensorShapesVector.size());
for(const std::string& shape : inputTensorShapesVector)
{
std::stringstream ss(shape);
std::vector<unsigned int> dims = ParseArray(ss);
m_ExNetParams.m_InputTensorShapes.push_back(
armnn::TensorShape{static_cast<unsigned int>(dims.size()), dims.data()});
}
}
// We have to validate ExecuteNetworkParams first so that the tuning path and level is validated
ValidateExecuteNetworkParams();
// Parse CL tuning parameters to runtime options
if (!m_ExNetParams.m_TuningPath.empty())
{
m_RuntimeOptions.m_BackendOptions.emplace_back(
armnn::BackendOptions
{
"GpuAcc",
{
{"TuningLevel", m_ExNetParams.m_TuningLevel},
{"TuningFile", m_ExNetParams.m_TuningPath.c_str()},
{"KernelProfilingEnabled", m_ExNetParams.m_EnableProfiling},
{"MLGOTuningFilePath", m_ExNetParams.m_MLGOTuningFilePath}
}
}
);
}
ValidateRuntimeOptions();
auto comparisonComputDevices = GetOptionValue<std::vector<std::string>>("compare-output-with-backend", m_CxxResult);
if (!comparisonComputDevices.empty())
{
m_ExNetParams.m_ComparisonComputeDevices = GetBackendIDs(comparisonComputDevices);
}
}
|