1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
//
// Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#if defined(ARMNN_TFLITE_OPAQUE_DELEGATE)
#include <../delegate/opaque/include/armnn_delegate.hpp>
#endif
#include <tensorflow/lite/core/c/c_api.h>
#include "TfliteExecutor.hpp"
#include "tensorflow/lite/kernels/kernel_util.h"
#include <string>
std::string TfLiteStatusToString(const TfLiteStatus status)
{
switch (status)
{
case kTfLiteOk:
return "Status: Ok.";
// Generally referring to an error in the runtime (i.e. interpreter)
case kTfLiteError:
return "Status: Tf runtime error.";
// Generally referring to an error from a TfLiteDelegate itself.
case kTfLiteDelegateError:
return "Status: The loaded delegate has returned an error.";
// Generally referring to an error in applying a delegate due to
// incompatibility between runtime and delegate, e.g., this error is returned
// when trying to apply a TF Lite delegate onto a model graph that's already
// immutable.
case kTfLiteApplicationError:
return "Status: Application error. An incompatibility between the Tf runtime and the loaded delegate.";
// Generally referring to serialized delegate data not being found.
// See tflite::delegates::Serialization.
case kTfLiteDelegateDataNotFound:
return "Status: data not found.";
// Generally referring to data-writing issues in delegate serialization.
// See tflite::delegates::Serialization.
case kTfLiteDelegateDataWriteError:
return "Status: Error writing serialization data.";
// Generally referring to data-reading issues in delegate serialization.
// See tflite::delegates::Serialization.
case kTfLiteDelegateDataReadError:
return "Status: Error reading serialization data.";
// Generally referring to issues when the TF Lite model has ops that cannot be
// resolved at runtime. This could happen when the specific op is not
// registered or built with the TF Lite framework.
case kTfLiteUnresolvedOps:
return "Status: Model contains an operation that is not recognised by the runtime.";
// Generally referring to invocation cancelled by the user.
case kTfLiteCancelled:
return "Status: invocation has been cancelled by the user.";
}
return "Unknown status result.";
}
TfLiteExecutor::TfLiteExecutor(const ExecuteNetworkParams& params, armnn::IRuntime::CreationOptions runtimeOptions)
: m_Params(params)
{
m_Model = tflite::FlatBufferModel::BuildFromFile(m_Params.m_ModelPath.c_str());
if (!m_Model)
{
LogAndThrow("Failed to load TfLite model from: " + m_Params.m_ModelPath);
}
m_TfLiteInterpreter = std::make_unique<Interpreter>();
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder builder(*m_Model, resolver);
if (m_Params.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteOpaqueDelegate)
{
#if defined(ARMNN_TFLITE_OPAQUE_DELEGATE)
// Use default settings until options have been enabled
flatbuffers::FlatBufferBuilder flatBufferBuilder;
TFLiteSettingsBuilder tfliteSettingsBuilder(flatBufferBuilder);
flatbuffers::Offset<TFLiteSettings> tfliteSettings = tfliteSettingsBuilder.Finish();
flatBufferBuilder.Finish(tfliteSettings);
const TFLiteSettings* settings =
flatbuffers::GetRoot<TFLiteSettings>(flatBufferBuilder.GetBufferPointer());
std::unique_ptr<delegates::DelegatePluginInterface> delegatePlugIn =
delegates::DelegatePluginRegistry::CreateByName("armnn_delegate", *settings);
// Create Armnn Opaque Delegate from Armnn Delegate Plugin
delegates::TfLiteDelegatePtr armnnDelegate = delegatePlugIn->Create();
// Add Delegate to the builder
builder.AddDelegate(armnnDelegate.get());
if (builder(&m_TfLiteInterpreter) != kTfLiteOk)
{
LogAndThrow("Error loading the model into the TfLiteInterpreter.");
}
#else
LogAndThrow("Not built with Arm NN Tensorflow-Lite opaque delegate support.");
#endif
}
else if (m_Params.m_TfLiteExecutor == ExecuteNetworkParams::TfLiteExecutor::ArmNNTfLiteDelegate)
{
#if defined(ARMNN_TFLITE_DELEGATE)
if (builder(&m_TfLiteInterpreter) != kTfLiteOk)
{
LogAndThrow("Error loading the model into the TfLiteInterpreter.");
}
// Create the Armnn Delegate
// Populate a DelegateOptions from the ExecuteNetworkParams.
armnnDelegate::DelegateOptions delegateOptions = m_Params.ToDelegateOptions();
delegateOptions.SetRuntimeOptions(runtimeOptions);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
armnnDelegate::TfLiteArmnnDelegateDelete);
// Register armnn_delegate to TfLiteInterpreter
auto result = m_TfLiteInterpreter->ModifyGraphWithDelegate(std::move(theArmnnDelegate));
if (result != kTfLiteOk)
{
LogAndThrow("Could not register ArmNN TfLite Delegate to TfLiteInterpreter: " +
TfLiteStatusToString(result) + ".");
}
#else
LogAndThrow("Not built with Arm NN Tensorflow-Lite delegate support.");
#endif
}
else
{
if (builder(&m_TfLiteInterpreter) != kTfLiteOk)
{
LogAndThrow("Error loading the model into the TfLiteInterpreter.");
}
std::cout << "Running on TfLite without ArmNN delegate\n";
}
if (m_TfLiteInterpreter->AllocateTensors() != kTfLiteOk)
{
LogAndThrow("Failed to allocate tensors in the TfLiteInterpreter.");
}
const size_t numInputs = m_TfLiteInterpreter->inputs().size();
for(unsigned int inputIndex = 0; inputIndex < numInputs; ++inputIndex)
{
armnn::Optional<std::string> dataFile = m_Params.m_GenerateTensorData
? armnn::EmptyOptional()
: armnn::MakeOptional<std::string>(m_Params.m_InputTensorDataFilePaths[inputIndex]);
int input = m_TfLiteInterpreter->inputs()[inputIndex];
const auto& inputName = m_TfLiteInterpreter->tensor(input)->name;
// Before we start, check if the tensor is constant.
if (!tflite::IsConstantTensor(m_TfLiteInterpreter->tensor(input)))
{
TfLiteIntArray* inputDims = m_TfLiteInterpreter->tensor(input)->dims;
unsigned int inputSize = 1;
for (unsigned int dim = 0; dim < static_cast<unsigned int>(inputDims->size); ++dim)
{
inputSize *= inputDims->data[dim];
}
const auto& dataType = m_TfLiteInterpreter->tensor(input)->type;
switch (dataType)
{
case kTfLiteFloat32:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<float>(input);
PopulateTensorWithData<float>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteInt32:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<int32_t>(input);
PopulateTensorWithData<int32_t>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteUInt8:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<uint8_t>(input);
PopulateTensorWithData<uint8_t>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteInt16:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<int16_t>(input);
PopulateTensorWithData<int16_t>(inputData, inputSize, dataFile, inputName);
break;
}
case kTfLiteInt8:
{
auto inputData = m_TfLiteInterpreter->typed_tensor<int8_t>(input);
PopulateTensorWithData<int8_t>(inputData, inputSize, dataFile, inputName);
break;
}
default:
{
LogAndThrow("Unsupported input tensor data type");
}
}
}
else
{
ARMNN_LOG(info) << "Input tensor \"" << inputName << "\" is constant and will not be populated with data.";
}
}
}
std::vector<const void *> TfLiteExecutor::Execute()
{
int status = 0;
std::vector<const void*> results;
for (size_t x = 0; x < m_Params.m_Iterations; x++)
{
// Start timer to record inference time in milliseconds.
const auto start_time = armnn::GetTimeNow();
// Run the inference
status = m_TfLiteInterpreter->Invoke();
const auto duration = armnn::GetTimeDuration(start_time);
if (!m_Params.m_DontPrintOutputs)
{
// Print out the output
for (unsigned int outputIndex = 0; outputIndex < m_TfLiteInterpreter->outputs().size(); ++outputIndex)
{
auto tfLiteDelegateOutputId = m_TfLiteInterpreter->outputs()[outputIndex];
TfLiteIntArray* outputDims = m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->dims;
// If we've been asked to write to a file then set a file output stream. Otherwise use stdout.
FILE* outputTensorFile = stdout;
if (!m_Params.m_OutputTensorFiles.empty())
{
outputTensorFile = fopen(m_Params.m_OutputTensorFiles[outputIndex].c_str(), "w");
if (outputTensorFile == NULL)
{
LogAndThrow("Specified output tensor file, \"" + m_Params.m_OutputTensorFiles[outputIndex] +
"\", cannot be created. Defaulting to stdout. Error was: " + std::strerror(errno));
}
else
{
ARMNN_LOG(info) << "Writing output " << outputIndex << "' of iteration: " << x + 1
<< " to file: '" << m_Params.m_OutputTensorFiles[outputIndex] << "'";
}
}
long outputSize = 1;
for (unsigned int dim = 0; dim < static_cast<unsigned int>(outputDims->size); ++dim)
{
outputSize *= outputDims->data[dim];
}
std::cout << m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->name << ": ";
results.push_back(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation);
switch (m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->type)
{
case kTfLiteFloat32:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<float>(
tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%f ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteInt32:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<int32_t>(
tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%d ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteUInt8:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<uint8_t>(
tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%u ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteInt8:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<int8_t>(
tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i)
{
fprintf(outputTensorFile, "%d ", tfLiteDelegateOutputData[i]);
}
break;
}
case kTfLiteBool:
{
auto tfLiteDelegateOutputData = m_TfLiteInterpreter->typed_tensor<bool>(
tfLiteDelegateOutputId);
for (int i = 0; i < outputSize; ++i) {
fprintf(outputTensorFile, "%u ", tfLiteDelegateOutputData[i]);
}
break;
}
default:
{
LogAndThrow("Unsupported output type");
}
}
std::cout << std::endl;
}
}
CheckInferenceTimeThreshold(duration, m_Params.m_ThresholdTime);
}
std::cout << status;
return results;
}
void TfLiteExecutor::CompareAndPrintResult(std::vector<const void*> otherOutput)
{
for (unsigned int outputIndex = 0; outputIndex < m_TfLiteInterpreter->outputs().size(); ++outputIndex)
{
auto tfLiteDelegateOutputId = m_TfLiteInterpreter->outputs()[outputIndex];
size_t size = m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->bytes;
double result = ComputeByteLevelRMSE(m_TfLiteInterpreter->tensor(tfLiteDelegateOutputId)->allocation,
otherOutput[outputIndex], size);
std::cout << "Byte level root mean square error: " << result << "\n";
}
};
|