1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include "InferenceTestImage.hpp"
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <armnn/utility/NumericCast.hpp>
#include <fmt/format.h>
#include <array>
#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.h>
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include <stb/stb_image_resize.h>
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include <stb/stb_image_write.h>
namespace
{
unsigned int GetImageChannelIndex(ImageChannelLayout channelLayout, ImageChannel channel)
{
switch (channelLayout)
{
case ImageChannelLayout::Rgb:
return static_cast<unsigned int>(channel);
case ImageChannelLayout::Bgr:
return 2u - static_cast<unsigned int>(channel);
default:
throw UnknownImageChannelLayout(fmt::format("Unknown layout {}", static_cast<int>(channelLayout)));
}
}
inline float Lerp(float a, float b, float w)
{
return w * b + (1.f - w) * a;
}
inline void PutData(std::vector<float> & data,
const unsigned int width,
const unsigned int x,
const unsigned int y,
const unsigned int c,
float value)
{
data[(3*((y*width)+x)) + c] = value;
}
std::vector<float> ResizeBilinearAndNormalize(const InferenceTestImage & image,
const unsigned int outputWidth,
const unsigned int outputHeight,
const float scale,
const std::array<float, 3>& mean,
const std::array<float, 3>& stddev)
{
std::vector<float> out;
out.resize(outputWidth * outputHeight * 3);
// We follow the definition of TensorFlow and AndroidNN: the top-left corner of a texel in the output
// image is projected into the input image to figure out the interpolants and weights. Note that this
// will yield different results than if projecting the centre of output texels.
const unsigned int inputWidth = image.GetWidth();
const unsigned int inputHeight = image.GetHeight();
// How much to scale pixel coordinates in the output image to get the corresponding pixel coordinates
// in the input image.
const float scaleY = armnn::numeric_cast<float>(inputHeight) / armnn::numeric_cast<float>(outputHeight);
const float scaleX = armnn::numeric_cast<float>(inputWidth) / armnn::numeric_cast<float>(outputWidth);
uint8_t rgb_x0y0[3];
uint8_t rgb_x1y0[3];
uint8_t rgb_x0y1[3];
uint8_t rgb_x1y1[3];
for (unsigned int y = 0; y < outputHeight; ++y)
{
// Corresponding real-valued height coordinate in input image.
const float iy = armnn::numeric_cast<float>(y) * scaleY;
// Discrete height coordinate of top-left texel (in the 2x2 texel area used for interpolation).
const float fiy = floorf(iy);
const unsigned int y0 = armnn::numeric_cast<unsigned int>(fiy);
// Interpolation weight (range [0,1])
const float yw = iy - fiy;
for (unsigned int x = 0; x < outputWidth; ++x)
{
// Real-valued and discrete width coordinates in input image.
const float ix = armnn::numeric_cast<float>(x) * scaleX;
const float fix = floorf(ix);
const unsigned int x0 = armnn::numeric_cast<unsigned int>(fix);
// Interpolation weight (range [0,1]).
const float xw = ix - fix;
// Discrete width/height coordinates of texels below and to the right of (x0, y0).
const unsigned int x1 = std::min(x0 + 1, inputWidth - 1u);
const unsigned int y1 = std::min(y0 + 1, inputHeight - 1u);
std::tie(rgb_x0y0[0], rgb_x0y0[1], rgb_x0y0[2]) = image.GetPixelAs3Channels(x0, y0);
std::tie(rgb_x1y0[0], rgb_x1y0[1], rgb_x1y0[2]) = image.GetPixelAs3Channels(x1, y0);
std::tie(rgb_x0y1[0], rgb_x0y1[1], rgb_x0y1[2]) = image.GetPixelAs3Channels(x0, y1);
std::tie(rgb_x1y1[0], rgb_x1y1[1], rgb_x1y1[2]) = image.GetPixelAs3Channels(x1, y1);
for (unsigned c=0; c<3; ++c)
{
const float ly0 = Lerp(float(rgb_x0y0[c]), float(rgb_x1y0[c]), xw);
const float ly1 = Lerp(float(rgb_x0y1[c]), float(rgb_x1y1[c]), xw);
const float l = Lerp(ly0, ly1, yw);
PutData(out, outputWidth, x, y, c, ((l / scale) - mean[c]) / stddev[c]);
}
}
}
return out;
}
} // namespace
InferenceTestImage::InferenceTestImage(char const* filePath)
: m_Width(0u)
, m_Height(0u)
, m_NumChannels(0u)
{
int width;
int height;
int channels;
using StbImageDataPtr = std::unique_ptr<unsigned char, decltype(&stbi_image_free)>;
StbImageDataPtr stbData(stbi_load(filePath, &width, &height, &channels, 0), &stbi_image_free);
if (stbData == nullptr)
{
throw InferenceTestImageLoadFailed(fmt::format("Could not load the image at {}", filePath));
}
if (width == 0 || height == 0)
{
throw InferenceTestImageLoadFailed(fmt::format("Could not load empty image at {}", filePath));
}
m_Width = armnn::numeric_cast<unsigned int>(width);
m_Height = armnn::numeric_cast<unsigned int>(height);
m_NumChannels = armnn::numeric_cast<unsigned int>(channels);
const unsigned int sizeInBytes = GetSizeInBytes();
m_Data.resize(sizeInBytes);
memcpy(m_Data.data(), stbData.get(), sizeInBytes);
}
std::tuple<uint8_t, uint8_t, uint8_t> InferenceTestImage::GetPixelAs3Channels(unsigned int x, unsigned int y) const
{
if (x >= m_Width || y >= m_Height)
{
throw InferenceTestImageOutOfBoundsAccess(fmt::format("Attempted out of bounds image access. "
"Requested ({0}, {1}). Maximum valid coordinates ({2}, {3}).", x, y, (m_Width - 1), (m_Height - 1)));
}
const unsigned int pixelOffset = x * GetNumChannels() + y * GetWidth() * GetNumChannels();
const uint8_t* const pixelData = m_Data.data() + pixelOffset;
ARMNN_ASSERT(pixelData <= (m_Data.data() + GetSizeInBytes()));
std::array<uint8_t, 3> outPixelData;
outPixelData.fill(0);
const unsigned int maxChannelsInPixel = std::min(GetNumChannels(), static_cast<unsigned int>(outPixelData.size()));
for (unsigned int c = 0; c < maxChannelsInPixel; ++c)
{
outPixelData[c] = pixelData[c];
}
return std::make_tuple(outPixelData[0], outPixelData[1], outPixelData[2]);
}
void InferenceTestImage::StbResize(InferenceTestImage& im, const unsigned int newWidth, const unsigned int newHeight)
{
std::vector<uint8_t> newData;
newData.resize(newWidth * newHeight * im.GetNumChannels() * im.GetSingleElementSizeInBytes());
// armnn::numeric_cast<>() is used for user-provided data (protecting about overflows).
// static_cast<> is ok for internal data (assumes that, when internal data was originally provided by a user,
// a armnn::numeric_cast<>() handled the conversion).
const int nW = armnn::numeric_cast<int>(newWidth);
const int nH = armnn::numeric_cast<int>(newHeight);
const int w = static_cast<int>(im.GetWidth());
const int h = static_cast<int>(im.GetHeight());
const int numChannels = static_cast<int>(im.GetNumChannels());
const int res = stbir_resize_uint8(im.m_Data.data(), w, h, 0, newData.data(), nW, nH, 0, numChannels);
if (res == 0)
{
throw InferenceTestImageResizeFailed("The resizing operation failed");
}
im.m_Data.swap(newData);
im.m_Width = newWidth;
im.m_Height = newHeight;
}
std::vector<float> InferenceTestImage::Resize(unsigned int newWidth,
unsigned int newHeight,
const armnn::CheckLocation& location,
const ResizingMethods meth,
const std::array<float, 3>& mean,
const std::array<float, 3>& stddev,
const float scale)
{
std::vector<float> out;
if (newWidth == 0 || newHeight == 0)
{
throw InferenceTestImageResizeFailed(fmt::format("None of the dimensions passed to a resize "
"operation can be zero. Requested width: {0}. Requested height: {1}.", newWidth, newHeight));
}
switch (meth) {
case ResizingMethods::STB:
{
StbResize(*this, newWidth, newHeight);
break;
}
case ResizingMethods::BilinearAndNormalized:
{
out = ResizeBilinearAndNormalize(*this, newWidth, newHeight, scale, mean, stddev);
break;
}
default:
throw InferenceTestImageResizeFailed(fmt::format("Unknown resizing method asked ArmNN only"
" supports {STB, BilinearAndNormalized} {}",
location.AsString()));
}
return out;
}
void InferenceTestImage::Write(WriteFormat format, const char* filePath) const
{
const int w = static_cast<int>(GetWidth());
const int h = static_cast<int>(GetHeight());
const int numChannels = static_cast<int>(GetNumChannels());
int res = 0;
switch (format)
{
case WriteFormat::Png:
{
res = stbi_write_png(filePath, w, h, numChannels, m_Data.data(), 0);
break;
}
case WriteFormat::Bmp:
{
res = stbi_write_bmp(filePath, w, h, numChannels, m_Data.data());
break;
}
case WriteFormat::Tga:
{
res = stbi_write_tga(filePath, w, h, numChannels, m_Data.data());
break;
}
default:
throw InferenceTestImageWriteFailed(fmt::format("Unknown format {}", static_cast<int>(format)));
}
if (res == 0)
{
throw InferenceTestImageWriteFailed(fmt::format("An error occurred when writing to file {}",
filePath));
}
}
template <typename TProcessValueCallable>
std::vector<float> GetImageDataInArmNnLayoutAsFloats(ImageChannelLayout channelLayout,
const InferenceTestImage& image,
TProcessValueCallable processValue)
{
const unsigned int h = image.GetHeight();
const unsigned int w = image.GetWidth();
std::vector<float> imageData;
imageData.resize(h * w * 3);
for (unsigned int j = 0; j < h; ++j)
{
for (unsigned int i = 0; i < w; ++i)
{
uint8_t r, g, b;
std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
// ArmNN order: C, H, W
const unsigned int rDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::R) * h * w + j * w + i;
const unsigned int gDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::G) * h * w + j * w + i;
const unsigned int bDstIndex = GetImageChannelIndex(channelLayout, ImageChannel::B) * h * w + j * w + i;
imageData[rDstIndex] = processValue(ImageChannel::R, float(r));
imageData[gDstIndex] = processValue(ImageChannel::G, float(g));
imageData[bDstIndex] = processValue(ImageChannel::B, float(b));
}
}
return imageData;
}
std::vector<float> GetImageDataInArmNnLayoutAsNormalizedFloats(ImageChannelLayout layout,
const InferenceTestImage& image)
{
return GetImageDataInArmNnLayoutAsFloats(layout, image,
[](ImageChannel channel, float value)
{
armnn::IgnoreUnused(channel);
return value / 255.f;
});
}
std::vector<float> GetImageDataInArmNnLayoutAsFloatsSubtractingMean(ImageChannelLayout layout,
const InferenceTestImage& image,
const std::array<float, 3>& mean)
{
return GetImageDataInArmNnLayoutAsFloats(layout, image,
[layout, &mean](ImageChannel channel, float value)
{
const unsigned int channelIndex = GetImageChannelIndex(layout, channel);
return value - mean[channelIndex];
});
}
std::vector<float> GetImageDataAsNormalizedFloats(ImageChannelLayout layout,
const InferenceTestImage& image)
{
std::vector<float> imageData;
const unsigned int h = image.GetHeight();
const unsigned int w = image.GetWidth();
const unsigned int rDstIndex = GetImageChannelIndex(layout, ImageChannel::R);
const unsigned int gDstIndex = GetImageChannelIndex(layout, ImageChannel::G);
const unsigned int bDstIndex = GetImageChannelIndex(layout, ImageChannel::B);
imageData.resize(h * w * 3);
unsigned int offset = 0;
for (unsigned int j = 0; j < h; ++j)
{
for (unsigned int i = 0; i < w; ++i)
{
uint8_t r, g, b;
std::tie(r, g, b) = image.GetPixelAs3Channels(i, j);
imageData[offset+rDstIndex] = float(r) / 255.0f;
imageData[offset+gDstIndex] = float(g) / 255.0f;
imageData[offset+bDstIndex] = float(b) / 255.0f;
offset += 3;
}
}
return imageData;
}
|