1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "InferenceTest.hpp"
#include "MobileNetSsdDatabase.hpp"
#include <armnn/utility/Assert.hpp>
#include <armnn/utility/IgnoreUnused.hpp>
#include <armnn/utility/NumericCast.hpp>
#include <armnnUtils/FloatingPointComparison.hpp>
#include <vector>
namespace
{
template<typename Model>
class MobileNetSsdTestCase : public InferenceModelTestCase<Model>
{
public:
MobileNetSsdTestCase(Model& model,
unsigned int testCaseId,
const MobileNetSsdTestCaseData& testCaseData)
: InferenceModelTestCase<Model>(model,
testCaseId,
{ std::move(testCaseData.m_InputData) },
{ k_OutputSize1, k_OutputSize2, k_OutputSize3, k_OutputSize4 })
, m_DetectedObjects(testCaseData.m_ExpectedDetectedObject)
{}
TestCaseResult ProcessResult(const InferenceTestOptions& options) override
{
armnn::IgnoreUnused(options);
// bounding boxes
const std::vector<float>& output1 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[0]);
ARMNN_ASSERT(output1.size() == k_OutputSize1);
// classes
const std::vector<float>& output2 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[1]);
ARMNN_ASSERT(output2.size() == k_OutputSize2);
// scores
const std::vector<float>& output3 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[2]);
ARMNN_ASSERT(output3.size() == k_OutputSize3);
// valid detections
const std::vector<float>& output4 = mapbox::util::get<std::vector<float>>(this->GetOutputs()[3]);
ARMNN_ASSERT(output4.size() == k_OutputSize4);
const size_t numDetections = armnn::numeric_cast<size_t>(output4[0]);
// Check if number of valid detections matches expectations
const size_t expectedNumDetections = m_DetectedObjects.size();
if (numDetections != expectedNumDetections)
{
ARMNN_LOG(error) << "Number of detections is incorrect: Expected (" <<
expectedNumDetections << ")" << " but got (" << numDetections << ")";
return TestCaseResult::Failed;
}
// Extract detected objects from output data
std::vector<DetectedObject> detectedObjects;
const float* outputData = output1.data();
for (unsigned int i = 0u; i < numDetections; i++)
{
// NOTE: Order of coordinates in output data is yMin, xMin, yMax, xMax
float yMin = *outputData++;
float xMin = *outputData++;
float yMax = *outputData++;
float xMax = *outputData++;
DetectedObject detectedObject(
output2.at(i),
BoundingBox(xMin, yMin, xMax, yMax),
output3.at(i));
detectedObjects.push_back(detectedObject);
}
std::sort(detectedObjects.begin(), detectedObjects.end());
std::sort(m_DetectedObjects.begin(), m_DetectedObjects.end());
// Compare detected objects with expected results
std::vector<DetectedObject>::const_iterator it = detectedObjects.begin();
for (unsigned int i = 0; i < numDetections; i++)
{
if (it == detectedObjects.end())
{
ARMNN_LOG(error) << "No more detected objects found! Index out of bounds: " << i;
return TestCaseResult::Abort;
}
const DetectedObject& detectedObject = *it;
const DetectedObject& expectedObject = m_DetectedObjects[i];
if (detectedObject.m_Class != expectedObject.m_Class)
{
ARMNN_LOG(error) << "Prediction for test case " << this->GetTestCaseId() <<
" is incorrect: Expected (" << expectedObject.m_Class << ")" <<
" but predicted (" << detectedObject.m_Class << ")";
return TestCaseResult::Failed;
}
if(!armnnUtils::within_percentage_tolerance(detectedObject.m_Confidence, expectedObject.m_Confidence))
{
ARMNN_LOG(error) << "Confidence of prediction for test case " << this->GetTestCaseId() <<
" is incorrect: Expected (" << expectedObject.m_Confidence << ") +- 1.0 pc" <<
" but predicted (" << detectedObject.m_Confidence << ")";
return TestCaseResult::Failed;
}
if (!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_XMin,
expectedObject.m_BoundingBox.m_XMin) ||
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_YMin,
expectedObject.m_BoundingBox.m_YMin) ||
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_XMax,
expectedObject.m_BoundingBox.m_XMax) ||
!armnnUtils::within_percentage_tolerance(detectedObject.m_BoundingBox.m_YMax,
expectedObject.m_BoundingBox.m_YMax))
{
ARMNN_LOG(error) << "Detected bounding box for test case " << this->GetTestCaseId() <<
" is incorrect";
return TestCaseResult::Failed;
}
++it;
}
return TestCaseResult::Ok;
}
private:
static constexpr unsigned int k_Shape = 10u;
static constexpr unsigned int k_OutputSize1 = k_Shape * 4u;
static constexpr unsigned int k_OutputSize2 = k_Shape;
static constexpr unsigned int k_OutputSize3 = k_Shape;
static constexpr unsigned int k_OutputSize4 = 1u;
std::vector<DetectedObject> m_DetectedObjects;
};
template <typename Model>
class MobileNetSsdTestCaseProvider : public IInferenceTestCaseProvider
{
public:
template <typename TConstructModelCallable>
explicit MobileNetSsdTestCaseProvider(TConstructModelCallable constructModel)
: m_ConstructModel(constructModel)
{}
virtual void AddCommandLineOptions(cxxopts::Options& options, std::vector<std::string>& required) override
{
options
.allow_unrecognised_options()
.add_options()
("d,data-dir", "Path to directory containing test data", cxxopts::value<std::string>(m_DataDir));
required.emplace_back("data-dir");
Model::AddCommandLineOptions(options, m_ModelCommandLineOptions, required);
}
virtual bool ProcessCommandLineOptions(const InferenceTestOptions& commonOptions) override
{
if (!ValidateDirectory(m_DataDir))
{
return false;
}
m_Model = m_ConstructModel(commonOptions, m_ModelCommandLineOptions);
if (!m_Model)
{
return false;
}
std::pair<float, int32_t> qParams = m_Model->GetInputQuantizationParams();
m_Database = std::make_unique<MobileNetSsdDatabase>(m_DataDir.c_str(), qParams.first, qParams.second);
if (!m_Database)
{
return false;
}
return true;
}
std::unique_ptr<IInferenceTestCase> GetTestCase(unsigned int testCaseId) override
{
std::unique_ptr<MobileNetSsdTestCaseData> testCaseData = m_Database->GetTestCaseData(testCaseId);
if (!testCaseData)
{
return nullptr;
}
return std::make_unique<MobileNetSsdTestCase<Model>>(*m_Model, testCaseId, *testCaseData);
}
private:
typename Model::CommandLineOptions m_ModelCommandLineOptions;
std::function<std::unique_ptr<Model>(const InferenceTestOptions &,
typename Model::CommandLineOptions)> m_ConstructModel;
std::unique_ptr<Model> m_Model;
std::string m_DataDir;
std::unique_ptr<MobileNetSsdDatabase> m_Database;
};
} // anonymous namespace
|