1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
/*
ARPACK++ v1.0 8/1/1997
c++ interface to ARPACK code.
MODULE DNSymReg.cc.
Example program that illustrates how to solve a real
nonsymmetric dense standard eigenvalue problem in regular
mode using the ARluNonSymStdEig class.
1) Problem description:
In this example we try to solve A*x = x*lambda in regular mode,
where A is derived from the standard central difference
discretization of the 2-dimensional convection-diffusion operator
(Laplacian u) + rho*(du/dx)
on a unit square with zero Dirichlet boundary conditions.
2) Data structure used to represent matrix A:
Although A is very sparse in this example, it is stored
here columnwise as a dense matrix.
3) Included header files:
File Contents
----------- -------------------------------------------
dnmatrxa.h DenseMatrixA, a function that generates
matrix A.
ardnsmat.h The ARdsNonSymMatrix class definition.
ardsnsym.h The ARluNonSymStdEig class definition.
lnsymsol.h The Solution function.
4) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "dnmatrxa.h"
#include "ardnsmat.h"
#include "ardsnsym.h"
#include "lnsymsol.h"
main()
{
// Defining variables;
int nx;
int n; // Dimension of the problem.
double rho; // Parameter used to define A.
double* A; // Pointer to an array that stores the elements of A.
// Creating a 100x100 matrix.
nx = 10;
rho = 100.0;
DenseMatrixA(nx, rho, n, A);
ARdsNonSymMatrix<double> matrix(n, A);
// Defining what we need: the four eigenvectors of A with largest magnitude.
ARluNonSymStdEig<double> dprob(4, matrix, "SM", 20);
// Finding eigenvalues and eigenvectors.
dprob.FindEigenvectors();
// Printing solution.
Solution(matrix, dprob);
} // main.
|