1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
/*
ARPACK++ v1.2 2/18/2000
c++ interface to ARPACK code.
MODULE RSymReg.cc.
Example program that illustrates how to solve a real symmetric
standard eigenvalue problem in regular mode using the
ARrcSymStdEig class.
1) Problem description:
In this example we try to solve A*x = x*lambda in regular mode,
where A is derived from the central difference discretization
of the 2-dimensional Laplacian on the unit square [0,1]x[0,1]
with zero Dirichlet boundary conditions.
2) Data structure used to represent matrix A:
ARrcSymStdEig is a class that requires the user to provide a
way to perform the matrix-vector product w = Av. In this
example a class called SymMatrixA was created with this purpose.
SymMatrixA contains a member function, MultMv(v,w), that takes a
vector v and returns the product Av in w.
3) The reverse communication interface:
This example uses the reverse communication interface, which
means that the desired eigenvalues cannot be obtained directly
from an ARPACK++ class.
Here, the overall process of finding eigenvalues by using the
Arnoldi method is splitted into two parts. In the first, a
sequence of calls to a function called TakeStep is combined
with matrix-vector products in order to find an Arnoldi basis.
In the second part, an ARPACK++ function like FindEigenvectors
(or EigenValVectors) is used to extract eigenvalues and
eigenvectors.
4) Included header files:
File Contents
----------- -------------------------------------------
smatrixa.h The SymMatrixA class definition.
arrssym.h The ARrcSymStdEig class definition.
rsymsol.h The Solution function.
5) ARPACK Authors:
Richard Lehoucq
Kristyn Maschhoff
Danny Sorensen
Chao Yang
Dept. of Computational & Applied Mathematics
Rice University
Houston, Texas
*/
#include "arrssym.h"
#include "smatrixa.h"
#include "rsymsol.h"
template<class T>
void Test(T type)
{
// Defining a matrix.
SymMatrixA<T> A(10); // n = 10*10 is the dimension of the problem.
// Creating a symmetric eigenvalue problem and defining what we need:
// the four eigenvectors of A with smallest magnitude.
ARrcSymStdEig<T> prob(A.ncols(), 4L, "SM");
// Finding an Arnoldi basis.
while (!prob.ArnoldiBasisFound()) {
// Calling ARPACK FORTRAN code. Almost all work needed to
// find an Arnoldi basis is performed by TakeStep.
prob.TakeStep();
if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) {
// Performing matrix-vector multiplication.
// In regular mode, w = Av must be performed whenever
// GetIdo is equal to 1 or -1. GetVector supplies a pointer
// to the input vector, v, and PutVector a pointer to the
// output vector, w.
A.MultMv(prob.GetVector(), prob.PutVector());
}
}
// Finding eigenvalues and eigenvectors.
prob.FindEigenvectors();
// Printing solution.
Solution(prob);
} // Test
int main()
{
// Solving a double precision problem with n = 100.
Test((double)0.0);
// Solving a single precision problem with n = 100.
Test((float)0.0);
} // main
|